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Prerequisites


	Linux or macOS (Windows is in experimental support)


	Python 3.6+


	PyTorch 1.3+


	CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)


	GCC 5+


	MMCV [https://mmcv.readthedocs.io/en/latest/#installation]




The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.




	MMDetection3D version
	MMDetection version
	MMSegmentation version
	MMCV version





	master
	mmdet>=2.19.0, <=3.0.0
	mmseg>=0.20.0, <=1.0.0
	mmcv-full>=1.4.8, <=1.5.0



	v1.0.0rc1
	mmdet>=2.19.0, <=3.0.0
	mmseg>=0.20.0, <=1.0.0
	mmcv-full>=1.4.8, <=1.5.0



	v1.0.0rc0
	mmdet>=2.19.0, <=3.0.0
	mmseg>=0.20.0, <=1.0.0
	mmcv-full>=1.3.17, <=1.5.0



	0.18.1
	mmdet>=2.19.0, <=3.0.0
	mmseg>=0.20.0, <=1.0.0
	mmcv-full>=1.3.17, <=1.5.0



	0.18.0
	mmdet>=2.19.0, <=3.0.0
	mmseg>=0.20.0, <=1.0.0
	mmcv-full>=1.3.17, <=1.5.0



	0.17.3
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.17.2
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.17.1
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.17.0
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.16.0
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.15.0
	mmdet>=2.14.0, <=3.0.0
	mmseg>=0.14.1, <=1.0.0
	mmcv-full>=1.3.8, <=1.4.0



	0.14.0
	mmdet>=2.10.0, <=2.11.0
	mmseg==0.14.0
	mmcv-full>=1.3.1, <=1.4.0



	0.13.0
	mmdet>=2.10.0, <=2.11.0
	Not required
	mmcv-full>=1.2.4, <=1.4.0



	0.12.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.2.4, <=1.4.0



	0.11.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.2.4, <=1.3.0



	0.10.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.2.4, <=1.3.0



	0.9.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.2.4, <=1.3.0



	0.8.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.1.5, <=1.3.0



	0.7.0
	mmdet>=2.5.0, <=2.11.0
	Not required
	mmcv-full>=1.1.5, <=1.3.0



	0.6.0
	mmdet>=2.4.0, <=2.11.0
	Not required
	mmcv-full>=1.1.3, <=1.2.0



	0.5.0
	2.3.0
	Not required
	mmcv-full==1.0.5







Installation


Install MMDetection3D


Quick installation instructions script

Assuming that you already have CUDA 11.0 installed, here is a full script for quick installation of MMDetection3D with conda.
Otherwise, you should refer to the step-by-step installation instructions in the next section.

conda create -n open-mmlab python=3.7 pytorch=1.9 cudatoolkit=11.0 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
mim install mmdet
mim install mmsegmentation
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip3 install -e .








Step-by-step installation instructions

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab





b. Install PyTorch and torchvision following the official instructions [https://pytorch.org/].

conda install pytorch torchvision -c pytorch





Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the PyTorch website [https://pytorch.org/].

E.g. 1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch





E.g. 2 If you have CUDA 9.2 installed under /usr/local/cuda and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.

conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch





If you build PyTorch from source instead of installing the prebuilt package,
you can use more CUDA versions such as 9.0.

c. Install MMCV [https://mmcv.readthedocs.io/en/latest/].
mmcv-full is necessary since MMDetection3D relies on MMDetection, CUDA ops in mmcv-full are required.

e.g. The pre-build mmcv-full could be installed by running: (available versions could be found here [https://mmcv.readthedocs.io/en/latest/#install-with-pip])

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html





Please replace {cu_version} and {torch_version} in the url to your desired one. For example, to install the latest mmcv-full with CUDA 11 and PyTorch 1.7.0, use the following command:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html





mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.

# We can ignore the micro version of PyTorch
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html





See here [https://github.com/open-mmlab/mmcv#install-with-pip] for different versions of MMCV compatible to different PyTorch and CUDA versions.
Optionally, you could also build the full version from source:

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..





Or directly run

pip install mmcv-full





d. Install MMDetection [https://github.com/open-mmlab/mmdetection].

pip install mmdet





Optionally, you could also build MMDetection from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
git checkout v2.19.0  # switch to v2.19.0 branch
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"





e. Install MMSegmentation [https://github.com/open-mmlab/mmsegmentation].

pip install mmsegmentation





Optionally, you could also build MMSegmentation from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
git checkout v0.20.0  # switch to v0.20.0 branch
pip install -e .  # or "python setup.py develop"





f. Clone the MMDetection3D repository.

git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d





g.Install build requirements and then install MMDetection3D.

pip install -v -e .  # or "python setup.py develop"





Note:


	The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.


Important: Be sure to remove the ./build folder if you reinstall mmdet with a different CUDA/PyTorch version.




pip uninstall mmdet3d
rm -rf ./build
find . -name "*.so" | xargs rm







	Following the above instructions, MMDetection3D is installed on dev mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).


	If you would like to use opencv-python-headless instead of opencv-python,
you can install it before installing MMCV.


	Some dependencies are optional. Simply running pip install -v -e . will only install the minimum runtime requirements. To use optional dependencies like albumentations and imagecorruptions either install them manually with pip install -r requirements/optional.txt or specify desired extras when calling pip (e.g. pip install -v -e .[optional]). Valid keys for the extras field are: all, tests, build, and optional.


	The code can not be built for CPU only environment (where CUDA isn’t available) for now.









Another option: Docker Image

We provide a Dockerfile [https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile] to build an image.

# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d -f docker/Dockerfile .





Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d








A from-scratch setup script

Here is a full script for setting up MMdetection3D with conda.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
conda install -c pytorch pytorch torchvision -y

# install mmcv
pip install mmcv-full

# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git

# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .








Using multiple MMDetection3D versions

The train and test scripts already modify the PYTHONPATH to ensure the script use the MMDetection3D in the current directory.

To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH










Verification


Verify with point cloud demo

We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from model zoo. To test a single-modality 3D detection on point cloud scenes:

python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]





Examples:

python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth





If you want to input a ply file, you can use the following function and convert it to bin format. Then you can use the converted bin file to generate demo.
Note that you need to install pandas and plyfile before using this script. This function can also be used for data preprocessing for training ply data.

import numpy as np
import pandas as pd
from plyfile import PlyData

def convert_ply(input_path, output_path):
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)





Examples:

convert_ply('./test.ply', './test.bin')





If you have point clouds in other format (off, obj, etc.), you can use trimesh to convert them into ply.

import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply





Examples:

to_ply('./test.obj', './test.ply', 'obj')





More demos about single/multi-modality and indoor/outdoor 3D detection can be found in demo.




High-level APIs for testing point clouds


Synchronous interface

Here is an example of building the model and test given point clouds.

from mmdet3d.apis import init_model, inference_detector

config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'

# build the model from a config file and a checkpoint file
model = init_model(config_file, checkpoint_file, device='cuda:0')

# test a single image and show the results
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')













            

          

      

      

    

  

    
      
          
            
  
Demo


Introduction

We provide scripts for multi-modality/single-modality (LiDAR-based/vision-based), indoor/outdoor 3D detection and 3D semantic segmentation demos. The pre-trained models can be downloaded from model zoo [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/model_zoo.md/]. We provide pre-processed sample data from KITTI, SUN RGB-D, nuScenes and ScanNet dataset. You can use any other data following our pre-processing steps.




Testing


3D Detection


Single-modality demo

To test a 3D detector on point cloud data, simply run:

python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}] [--show]





The visualization results including a point cloud and predicted 3D bounding boxes will be saved in ${OUT_DIR}/PCD_NAME, which you can open using MeshLab [http://www.meshlab.net/]. Note that if you set the flag --show, the prediction result will be displayed online using Open3D [http://www.open3d.org/].

Example on KITTI data using SECOND [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second] model:

python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth





Example on SUN RGB-D data using VoteNet [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet] model:

python demo/pcd_demo.py demo/data/sunrgbd/sunrgbd_000017.bin configs/votenet/votenet_16x8_sunrgbd-3d-10class.py checkpoints/votenet_16x8_sunrgbd-3d-10class_20200620_230238-4483c0c0.pth





Remember to convert the VoteNet checkpoint if you are using mmdetection3d version >= 0.6.0. See its README [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet/README.md/] for detailed instructions on how to convert the checkpoint.




Multi-modality demo

To test a 3D detector on multi-modality data (typically point cloud and image), simply run:

python demo/multi_modality_demo.py ${PCD_FILE} ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}] [--show]





where the ANNOTATION_FILE should provide the 3D to 2D projection matrix. The visualization results including a point cloud, an image, predicted 3D bounding boxes and their projection on the image will be saved in ${OUT_DIR}/PCD_NAME.

Example on KITTI data using MVX-Net [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/mvxnet] model:

python demo/multi_modality_demo.py demo/data/kitti/kitti_000008.bin demo/data/kitti/kitti_000008.png demo/data/kitti/kitti_000008_infos.pkl configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904-10140f2d.pth





Example on SUN RGB-D data using ImVoteNet [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/imvotenet] model:

python demo/multi_modality_demo.py demo/data/sunrgbd/sunrgbd_000017.bin demo/data/sunrgbd/sunrgbd_000017.jpg demo/data/sunrgbd/sunrgbd_000017_infos.pkl configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py checkpoints/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210323_184021-d44dcb66.pth










Monocular 3D Detection

To test a monocular 3D detector on image data, simply run:

python demo/mono_det_demo.py ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--out-dir ${OUT_DIR}] [--show]





where the ANNOTATION_FILE should provide the 3D to 2D projection matrix (camera intrinsic matrix). The visualization results including an image and its predicted 3D bounding boxes projected on the image will be saved in ${OUT_DIR}/PCD_NAME.

Example on nuScenes data using FCOS3D [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fcos3d] model:

python demo/mono_det_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525_mono3d.coco.json configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth





Note that when visualizing results of monocular 3D detection for flipped images, the camera intrinsic matrix should also be modified accordingly. See more details and examples in PR #744 [https://github.com/open-mmlab/mmdetection3d/pull/744].




3D Segmentation

To test a 3D segmentor on point cloud data, simply run:

python demo/pc_seg_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--out-dir ${OUT_DIR}] [--show]





The visualization results including a point cloud and its predicted 3D segmentation mask will be saved in ${OUT_DIR}/PCD_NAME.

Example on ScanNet data using PointNet++ (SSG) [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointnet2] model:

python demo/pc_seg_demo.py demo/data/scannet/scene0000_00.bin configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth













            

          

      

      

    

  

    
      
          
            
  
Model Zoo


Common settings


	We use distributed training.


	For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.


	We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script benchmark.py [https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py] which computes the average time on 2000 images.







Baselines


SECOND

Please refer to SECOND [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/second] for details. We provide SECOND baselines on KITTI and Waymo datasets.




PointPillars

Please refer to PointPillars [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pointpillars] for details. We provide pointpillars baselines on KITTI, nuScenes, Lyft, and Waymo datasets.




Part-A2

Please refer to Part-A2 [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/parta2] for details.




VoteNet

Please refer to VoteNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet] for details. We provide VoteNet baselines on ScanNet and SUNRGBD datasets.




Dynamic Voxelization

Please refer to Dynamic Voxelization [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/dynamic_voxelization] for details.




MVXNet

Please refer to MVXNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/mvxnet] for details.




RegNetX

Please refer to RegNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/regnet] for details. We provide pointpillars baselines with RegNetX backbones on nuScenes and Lyft datasets currently.




nuImages

We also support baseline models on nuImages dataset [https://www.nuscenes.org/nuimages]. Please refer to nuImages [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/nuimages] for details. We report Mask R-CNN, Cascade Mask R-CNN and HTC results currently.




H3DNet

Please refer to H3DNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/h3dnet] for details.




3DSSD

Please refer to 3DSSD [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/3dssd] for details.




CenterPoint

Please refer to CenterPoint [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/centerpoint] for details.




SSN

Please refer to SSN [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/ssn] for details. We provide pointpillars with shape-aware grouping heads used in SSN on the nuScenes and Lyft datasets currently.




ImVoteNet

Please refer to ImVoteNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/imvotenet] for details. We provide ImVoteNet baselines on SUNRGBD dataset.




FCOS3D

Please refer to FCOS3D [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d] for details. We provide FCOS3D baselines on the nuScenes dataset.




PointNet++

Please refer to PointNet++ [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pointnet2] for details. We provide PointNet++ baselines on ScanNet and S3DIS datasets.




Group-Free-3D

Please refer to Group-Free-3D [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/groupfree3d] for details. We provide Group-Free-3D baselines on ScanNet dataset.




ImVoxelNet

Please refer to ImVoxelNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/imvoxelnet] for details. We provide ImVoxelNet baselines on KITTI dataset.




PAConv

Please refer to PAConv [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/paconv] for details. We provide PAConv baselines on S3DIS dataset.




DGCNN

Please refer to DGCNN [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/dgcnn] for details. We provide DGCNN baselines on S3DIS dataset.




SMOKE

Please refer to SMOKE [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/smoke] for details. We provide SMOKE baselines on KITTI dataset.




PGD

Please refer to PGD [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd] for details. We provide PGD baselines on KITTI and nuScenes dataset.




PointRCNN

Please refer to PointRCNN [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/point_rcnn] for details. We provide PointRCNN baselines on KITTI dataset.




MonoFlex

Please refer to MonoFlex [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/monoflex] for details. We provide MonoFlex baselines on KITTI dataset.




Mixed Precision (FP16) Training

Please refer to Mixed Precision (FP16) Training on PointPillars [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py] for details.









            

          

      

      

    

  

    
      
          
            
  
Dataset Preparation


Before Preparation

It is recommended to symlink the dataset root to $MMDETECTION3D/data.
If your folder structure is different from the following, you may need to change the corresponding paths in config files.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   ├── waymo
│   │   ├── waymo_format
│   │   │   ├── training
│   │   │   ├── validation
│   │   │   ├── testing
│   │   │   ├── gt.bin
│   │   ├── kitti_format
│   │   │   ├── ImageSets
│   ├── lyft
│   │   ├── v1.01-train
│   │   │   ├── v1.01-train (train_data)
│   │   │   ├── lidar (train_lidar)
│   │   │   ├── images (train_images)
│   │   │   ├── maps (train_maps)
│   │   ├── v1.01-test
│   │   │   ├── v1.01-test (test_data)
│   │   │   ├── lidar (test_lidar)
│   │   │   ├── images (test_images)
│   │   │   ├── maps (test_maps)
│   │   ├── train.txt
│   │   ├── val.txt
│   │   ├── test.txt
│   │   ├── sample_submission.csv
│   ├── s3dis
│   │   ├── meta_data
│   │   ├── Stanford3dDataset_v1.2_Aligned_Version
│   │   ├── collect_indoor3d_data.py
│   │   ├── indoor3d_util.py
│   │   ├── README.md
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
│   │   ├── scans_test
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md
│   ├── sunrgbd
│   │   ├── OFFICIAL_SUNRGBD
│   │   ├── matlab
│   │   ├── sunrgbd_data.py
│   │   ├── sunrgbd_utils.py
│   │   ├── README.md








Download and Data Preparation


KITTI

Download KITTI 3D detection data HERE [http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d]. Prepare KITTI data splits by running

mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt





Then generate info files by running

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti





In an environment using slurm, users may run the following command instead

sh tools/create_data.sh <partition> kitti








Waymo

Download Waymo open dataset V1.2 HERE [https://waymo.com/open/download/] and its data split HERE [https://drive.google.com/drive/folders/18BVuF_RYJF0NjZpt8SnfzANiakoRMf0o?usp=sharing]. Then put tfrecord files into corresponding folders in data/waymo/waymo_format/ and put the data split txt files into data/waymo/kitti_format/ImageSets. Download ground truth bin file for validation set HERE [https://console.cloud.google.com/storage/browser/waymo_open_dataset_v_1_2_0/validation/ground_truth_objects] and put it into data/waymo/waymo_format/. A tip is that you can use gsutil to download the large-scale dataset with commands. You can take this tool [https://github.com/RalphMao/Waymo-Dataset-Tool] as an example for more details. Subsequently, prepare waymo data by running

python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 128 --extra-tag waymo





Note that if your local disk does not have enough space for saving converted data, you can change the out-dir to anywhere else. Just remember to create folders and prepare data there in advance and link them back to data/waymo/kitti_format after the data conversion.




NuScenes

Download nuScenes V1.0 full dataset data HERE [https://www.nuscenes.org/download]. Prepare nuscenes data by running

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes








Lyft

Download Lyft 3D detection data HERE [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data]. Prepare Lyft data by running

python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-tag lyft --version v1.01
python tools/data_converter/lyft_data_fixer.py --version v1.01 --root-folder ./data/lyft





Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above. Also note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the discussion here [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000] for more details.




S3DIS, ScanNet and SUN RGB-D

To prepare S3DIS data, please see its README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/s3dis/README.md/].

To prepare ScanNet data, please see its README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/].

To prepare SUN RGB-D data, please see its README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/sunrgbd/README.md/].




Customized Datasets

For using custom datasets, please refer to Tutorials 2: Customize Datasets [https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_dataset.html].









            

          

      

      

    

  

    
      
          
            
  
1: Inference and train with existing models and standard datasets


Inference with existing models

Here we provide testing scripts to evaluate a whole dataset (SUNRGBD, ScanNet, KITTI, etc.).

For high-level apis easier to integrated into other projects and basic demos, please refer to Verification/Demo under Get Started [https://mmdetection3d.readthedocs.io/en/latest/getting_started.html].


Test existing models on standard datasets


	single GPU


	CPU


	single node multiple GPU


	multiple node




You can use the following commands to test a dataset.

# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show] [--show-dir ${SHOW_DIR}]

# CPU: disable GPUs and run single-gpu testing script (experimental)
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show] [--show-dir ${SHOW_DIR}]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]





Note:

For now, CPU testing is only supported for SMOKE.

Optional arguments:


	RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.


	EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset. Typically we default to use official metrics for evaluation on different datasets, so it can be simply set to mAP as a placeholder for detection tasks, which applies to nuScenes, Lyft, ScanNet and SUNRGBD. For KITTI, if we only want to evaluate the 2D detection performance, we can simply set the metric to img_bbox (unstable, stay tuned). For Waymo, we provide both KITTI-style evaluation (unstable) and Waymo-style official protocol, corresponding to metric kitti and waymo respectively. We recommend to use the default official metric for stable performance and fair comparison with other methods. Similarly, the metric can be set to mIoU for segmentation tasks, which applies to S3DIS and ScanNet.


	--show: If specified, detection results will be plotted in the silient mode. It is only applicable to single GPU testing and used for debugging and visualization. This should be used with --show-dir.


	--show-dir: If specified, detection results will be plotted on the ***_points.obj and ***_pred.obj files in the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.




Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/.


	Test VoteNet on ScanNet and save the points and prediction visualization results.

python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
    --show --show-dir ./data/scannet/show_results







	Test VoteNet on ScanNet, save the points, prediction, groundtruth visualization results, and evaluate the mAP.

python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
    --eval mAP
    --eval-options 'show=True' 'out_dir=./data/scannet/show_results'







	Test VoteNet on ScanNet (without saving the test results) and evaluate the mAP.

python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
    --eval mAP







	Test SECOND on KITTI with 8 GPUs, and evaluate the mAP.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py \
    checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth \
    --out results.pkl --eval mAP







	Test PointPillars on nuScenes with 8 GPUs, and generate the json file to be submit to the official evaluation server.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py \
    checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth \
    --format-only --eval-options 'jsonfile_prefix=./pointpillars_nuscenes_results'





The generated results be under ./pointpillars_nuscenes_results directory.



	Test SECOND on KITTI with 8 GPUs, and generate the pkl files and submission data to be submit to the official evaluation server.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py \
    checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth \
    --format-only --eval-options 'pklfile_prefix=./second_kitti_results' 'submission_prefix=./second_kitti_results'





The generated results be under ./second_kitti_results directory.



	Test PointPillars on Lyft with 8 GPUs, generate the pkl files and make a submission to the leaderboard.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_fpn_sbn-2x8_2x_lyft-3d.py \
    checkpoints/hv_pointpillars_fpn_sbn-2x8_2x_lyft-3d_latest.pth --out results/pp_lyft/results_challenge.pkl \
    --format-only --eval-options 'jsonfile_prefix=results/pp_lyft/results_challenge' \
    'csv_savepath=results/pp_lyft/results_challenge.csv'





Notice: To generate submissions on Lyft, csv_savepath must be given in the --eval-options. After generating the csv file, you can make a submission with kaggle commands given on the website [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/submit].

Note that in the config of Lyft dataset, the value of ann_file keyword in test is data_root + 'lyft_infos_test.pkl', which is the official test set of Lyft without annotation. To test on the validation set, please change this to data_root + 'lyft_infos_val.pkl'.



	Test PointPillars on waymo with 8 GPUs, and evaluate the mAP with waymo metrics.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car.py \
    checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth --out results/waymo-car/results_eval.pkl \
    --eval waymo --eval-options 'pklfile_prefix=results/waymo-car/kitti_results' \
    'submission_prefix=results/waymo-car/kitti_results'





Notice: For evaluation on waymo, please follow the instruction [https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md/] to build the binary file compute_detection_metrics_main for metrics computation and put it into mmdet3d/core/evaluation/waymo_utils/.(Sometimes when using bazel to build compute_detection_metrics_main, an error 'round' is not a member of 'std' may appear. We just need to remove the std:: before round in that file.) pklfile_prefix should be given in the --eval-options for the bin file generation. For metrics, waymo is the recommended official evaluation prototype. Currently, evaluating with choice kitti is adapted from KITTI and the results for each difficulty are not exactly the same as the definition of KITTI. Instead, most of objects are marked with difficulty 0 currently, which will be fixed in the future. The reasons of its instability include the large computation for evaluation, the lack of occlusion and truncation in the converted data, different definition of difficulty and different methods of computing average precision.



	Test PointPillars on waymo with 8 GPUs, generate the bin files and make a submission to the leaderboard.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car.py \
    checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth --out results/waymo-car/results_eval.pkl \
    --format-only --eval-options 'pklfile_prefix=results/waymo-car/kitti_results' \
    'submission_prefix=results/waymo-car/kitti_results'





Notice: After generating the bin file, you can simply build the binary file create_submission and use them to create a submission file by following the instruction [https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md/]. For evaluation on the validation set with the eval server, you can also use the same way to generate a submission.










Train predefined models on standard datasets

MMDetection3D implements distributed training and non-distributed training,
which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir in the config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by adding the interval argument in the training config.

evaluation = dict(interval=12)  # This evaluate the model per 12 epoch.





Important: The default learning rate in config files is for 8 GPUs and the exact batch size is marked by the config’s file name, e.g. ‘2x8’ means 2 samples per GPU using 8 GPUs.
According to the Linear Scaling Rule [https://arxiv.org/abs/1706.02677], you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. However, since most of the models in this repo use ADAM rather than SGD for optimization, the rule may not hold and users need to tune the learning rate by themselves.


Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]





If you want to specify the working directory in the command, you can add an argument --work-dir ${YOUR_WORK_DIR}.




Training with CPU (experimental)

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

export CUDA_VISIBLE_DEVICES=-1





And then run the script of train with a single GPU.

Note:

For now, most of the point cloud related algorithms rely on 3D CUDA op, which can not be trained on CPU. Some monocular 3D object detection algorithms, like FCOS3D and SMOKE can be trained on CPU. We do not recommend users to use CPU for training because it is too slow. We support this feature to allow users to debug certain models on machines without GPU for convenience.




Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]





Optional arguments are:


	--no-validate (not suggested): By default, the codebase will perform evaluation at every k (default value is 1, which can be modified like this [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py#L75]) epochs during the training. To disable this behavior, use --no-validate.


	--work-dir ${WORK_DIR}: Override the working directory specified in the config file.


	--resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.


	--options 'Key=value': Override some settings in the used config.




Difference between resume-from and load-from:


	resume-from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.


	load-from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.







Train with multiple machines

If you run MMDetection3D on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh. (This script also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}





Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

GPUS=16 ./tools/slurm_train.sh dev pp_kitti_3class hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py /nfs/xxxx/pp_kitti_3class





You can check slurm_train.sh [https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh] for full arguments and environment variables.

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR ./tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR ./tools/dist_train.sh $CONFIG $GPUS





Usually it is slow if you do not have high speed networking like InfiniBand.




Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4





If you use launch training jobs with Slurm, there are two ways to specify the ports.


	Set the port through --options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --options 'dist_params.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --options 'dist_params.port=29501'







	Modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.

In config1.py,

dist_params = dict(backend='nccl', port=29500)





In config2.py,

dist_params = dict(backend='nccl', port=29501)





Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}

















            

          

      

      

    

  

    
      
          
            
  
2: Train with customized datasets

In this note, you will know how to train and test predefined models with customized datasets. We use the Waymo dataset as an example to describe the whole process.

The basic steps are as below:


	Prepare the customized dataset


	Prepare a config


	Train, test, inference models on the customized dataset.





Prepare the customized dataset

There are three ways to support a new dataset in MMDetection3D:


	reorganize the dataset into existing format.


	reorganize the dataset into a middle format.


	implement a new dataset.




Usually we recommend to use the first two methods which are usually easier than the third.

In this note, we give an example for converting the data into KITTI format.

Note: We take Waymo as the example here considering its format is totally different from other existing formats. For other datasets using similar methods to organize data, like Lyft compared to nuScenes, it would be easier to directly implement the new data converter (for the second approach above) instead of converting it to another format (for the first approach above).


KITTI dataset format

Firstly, the raw data for 3D object detection from KITTI are typically organized as follows, where ImageSets contains split files indicating which files belong to training/validation/testing set, calib contains calibration information files, image_2 and velodyne include image data and point cloud data, and label_2 includes label files for 3D detection.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne





Specific annotation format is described in the official object development kit [https://s3.eu-central-1.amazonaws.com/avg-kitti/devkit_object.zip]. For example, it consists of the following labels:

#Values    Name      Description
----------------------------------------------------------------------------
   1    type         Describes the type of object: 'Car', 'Van', 'Truck',
                     'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
                     'Misc' or 'DontCare'
   1    truncated    Float from 0 (non-truncated) to 1 (truncated), where
                     truncated refers to the object leaving image boundaries
   1    occluded     Integer (0,1,2,3) indicating occlusion state:
                     0 = fully visible, 1 = partly occluded
                     2 = largely occluded, 3 = unknown
   1    alpha        Observation angle of object, ranging [-pi..pi]
   4    bbox         2D bounding box of object in the image (0-based index):
                     contains left, top, right, bottom pixel coordinates
   3    dimensions   3D object dimensions: height, width, length (in meters)
   3    location     3D object location x,y,z in camera coordinates (in meters)
   1    rotation_y   Rotation ry around Y-axis in camera coordinates [-pi..pi]
   1    score        Only for results: Float, indicating confidence in
                     detection, needed for p/r curves, higher is better.





Assume we use the Waymo dataset.
After downloading the data, we need to implement a function to convert both the input data and annotation format into the KITTI style. Then we can implement WaymoDataset inherited from KittiDataset to load the data and perform training and evaluation.

Specifically, we implement a waymo converter [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/waymo_converter.py] to convert Waymo data into KITTI format and a waymo dataset class [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/waymo_dataset.py] to process it. Because we preprocess the raw data and reorganize it like KITTI, the dataset class could be implemented more easily by inheriting from KittiDataset. The last thing needed to be noted is the evaluation protocol you would like to use. Because Waymo has its own evaluation approach, we further incorporate it into our dataset class. Afterwards, users can successfully convert the data format and use WaymoDataset to train and evaluate the model.

For more details about the intermediate results of preprocessing of Waymo dataset, please refer to its tutorial [https://mmdetection3d.readthedocs.io/en/latest/datasets/waymo_det.html].






Prepare a config

The second step is to prepare configs such that the dataset could be successfully loaded. In addition, adjusting hyperparameters is usually necessary to obtain decent performance in 3D detection.

Suppose we would like to train PointPillars on Waymo to achieve 3D detection for 3 classes, vehicle, cyclist and pedestrian, we need to prepare dataset config like this [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/waymoD5-3d-3class.py], model config like this [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/models/hv_pointpillars_secfpn_waymo.py] and combine them like this [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py], compared to KITTI dataset config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/kitti-3d-3class.py], model config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/models/hv_pointpillars_secfpn_kitti.py] and overall [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py].




Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py





For more detailed usages, please refer to the Case 1 [https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html].




Test and inference

To test the trained model, you can simply run

python tools/test.py configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py work_dirs/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/latest.pth --eval waymo





Note: To use Waymo evaluation protocol, you need to follow the tutorial [https://mmdetection3d.readthedocs.io/en/latest/datasets/waymo_det.html] and prepare files related to metrics computation as official instructions.

For more detailed usages for test and inference, please refer to the Case 1 [https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html].







            

          

      

      

    

  

    
      
          
            
  
LiDAR-Based 3D Detection

LiDAR-based 3D detection is one of the most basic tasks supported in MMDetection3D.
It expects the given model to take any number of points with features collected by LiDAR as input, and predict the 3D bounding boxes and category labels for each object of interest.
Next, taking PointPillars on the KITTI dataset as an example, we will show how to prepare data, train and test a model on a standard 3D detection benchmark, and how to visualize and validate the results.


Data Preparation

To begin with, we need to download the raw data and reorganize the data in a standard way presented in the doc for data preparation [https://mmdetection3d.readthedocs.io/en/latest/data_preparation.html].
Note that for KITTI, we need extra txt files for data splits.

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data information with a .pkl or .json file.
So after getting all the raw data ready, we need to run the scripts provided in the create_data.py for different datasets to generate data infos.
For example, for KITTI we need to run:

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti





Afterwards, the related folder structure should be as follows:

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   ├── kitti_gt_database
│   │   ├── kitti_infos_train.pkl
│   │   ├── kitti_infos_trainval.pkl
│   │   ├── kitti_infos_val.pkl
│   │   ├── kitti_infos_test.pkl
│   │   ├── kitti_dbinfos_train.pkl








Training

Then let us train a model with provided configs for PointPillars.
You can basically follow this tutorial [https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html#inference-with-existing-models] for sample scripts when training with different GPU settings.
Suppose we use 8 GPUs on a single machine with distributed training:

./tools/dist_train.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py 8





Note that 6x8 in the config name refers to the training is completed with 8 GPUs and 6 samples on each GPU.
If your customized setting is different from this, sometimes you need to adjust the learning rate accordingly.
A basic rule can be referred to here [https://arxiv.org/abs/1706.02677].




Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of evaluation = dict(interval=xxx) in the config.
We support official evaluation protocols for different datasets.
For KITTI, the model will be evaluated with mean average precision (mAP) with Intersection over Union (IoU) thresholds 0.5/0.7 for 3 categories respectively.
The evaluation results will be printed in the command like:

Car AP@0.70, 0.70, 0.70:
bbox AP:98.1839, 89.7606, 88.7837
bev AP:89.6905, 87.4570, 85.4865
3d AP:87.4561, 76.7569, 74.1302
aos AP:97.70, 88.73, 87.34
Car AP@0.70, 0.50, 0.50:
bbox AP:98.1839, 89.7606, 88.7837
bev AP:98.4400, 90.1218, 89.6270
3d AP:98.3329, 90.0209, 89.4035
aos AP:97.70, 88.73, 87.34





In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the following:

./tools/dist_test.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py \
    work_dirs/pointpillars/latest.pth --eval mAP








Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark,
you just need to replace the --eval mAP with --format-only in the previous evaluation script and specify the pklfile_prefix and submission_prefix if necessary,
e.g., adding an option --eval-options submission_prefix=work_dirs/pointpillars/test_submission.
Please guarantee the info for testing [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/kitti-3d-3class.py#L131] in the config corresponds to the test set instead of validation set.
After generating the results, you can basically compress the folder and upload to the KITTI evaluation server.




Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that we can have an intuitive feeling of the detection results predicted by our trained models.
You can either set the --eval-options 'show=True' 'out_dir=${SHOW_DIR}' option to visualize the detection results online during evaluation,
or using tools/misc/visualize_results.py for offline visualization.
Besides, we also provide scripts tools/misc/browse_dataset.py to visualize the dataset without inference.
Please refer more details in the doc for visualization [https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization].







            

          

      

      

    

  

    
      
          
            
  
Vision-Based 3D Detection

Vision-based 3D detection refers to the 3D detection solutions based on vision-only input, such as monocular, binocular, and multi-view image based 3D detection.
Currently, we only support monocular and multi-view 3D detection methods. Other approaches should be also compatible with our framework and will be supported in the future.

It expects the given model to take any number of images as input, and predict the 3D bounding boxes and category labels for each object of interest.
Taking FCOS3D on the nuScenes dataset as an example, we will show how to prepare data, train and test a model on a standard 3D detection benchmark, and how to visualize and validate the results.


Data Preparation

To begin with, we need to download the raw data and reorganize the data in a standard way presented in the doc for data preparation [https://mmdetection3d.readthedocs.io/en/latest/data_preparation.html].

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data information with a .pkl or .json file.
So after getting all the raw data ready, we need to run the scripts provided in the create_data.py for different datasets to generate data infos.
For example, for nuScenes we need to run:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes





Afterwards, the related folder structure should be as follows:

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   │   ├── nuscenes_database
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_trainval.pkl
│   │   ├── nuscenes_infos_val.pkl
│   │   ├── nuscenes_infos_test.pkl
│   │   ├── nuscenes_dbinfos_train.pkl
│   │   ├── nuscenes_infos_train_mono3d.coco.json
│   │   ├── nuscenes_infos_trainval_mono3d.coco.json
│   │   ├── nuscenes_infos_val_mono3d.coco.json
│   │   ├── nuscenes_infos_test_mono3d.coco.json





Note that the .pkl files here are mainly used for methods using LiDAR data and .json files are used for 2D detection/vision-only 3D detection.
The .json files only contain infos for 2D detection before supporting monocular 3D detection in v0.13.0, so if you need the latest infos, please checkout the branches after v0.13.0.




Training

Then let us train a model with provided configs for FCOS3D. The basic script is the same as other models.
You can basically follow the examples provided in this tutorial [https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html#inference-with-existing-models] when training with different GPU settings.
Suppose we use 8 GPUs on a single machine with distributed training:

./tools/dist_train.sh configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py 8





Note that 2x8 in the config name refers to the training is completed with 8 GPUs and 2 data samples on each GPU.
If your customized setting is different from this, sometimes you need to adjust the learning rate accordingly.
A basic rule can be referred to here [https://arxiv.org/abs/1706.02677].

We can also achieve better performance with finetuned FCOS3D by running:

./tools/dist_train.sh fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py 8





after training a baseline model with the previous script.
Please remember to modify the path here [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py#L8] correspondingly.




Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of evaluation = dict(interval=xxx) in the config.

We support official evaluation protocols for different datasets.
Due to the output format is the same as 3D detection based on other modalities, the evaluation methods are also the same.

For nuScenes, the model will be evaluated with distance-based mean AP (mAP) and NuScenes Detection Score (NDS) for 10 categories respectively.
The evaluation results will be printed in the command like:

mAP: 0.3197
mATE: 0.7595
mASE: 0.2700
mAOE: 0.4918
mAVE: 1.3307
mAAE: 0.1724
NDS: 0.3905
Eval time: 170.8s

Per-class results:
Object Class    AP      ATE     ASE     AOE     AVE     AAE
car     0.503   0.577   0.152   0.111   2.096   0.136
truck   0.223   0.857   0.224   0.220   1.389   0.179
bus     0.294   0.855   0.204   0.190   2.689   0.283
trailer 0.081   1.094   0.243   0.553   0.742   0.167
construction_vehicle    0.058   1.017   0.450   1.019   0.137   0.341
pedestrian      0.392   0.687   0.284   0.694   0.876   0.158
motorcycle      0.317   0.737   0.265   0.580   2.033   0.104
bicycle 0.308   0.704   0.299   0.892   0.683   0.010
traffic_cone    0.555   0.486   0.309   nan     nan     nan
barrier 0.466   0.581   0.269   0.169   nan     nan





In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the following:

./tools/dist_test.sh configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py \
    work_dirs/fcos3d/latest.pth --eval mAP








Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark,
you just need to replace the --eval mAP with --format-only in the previous evaluation script and specify the jsonfile_prefix if necessary,
e.g., adding an option --eval-options jsonfile_prefix=work_dirs/fcos3d/test_submission.
Please guarantee the info for testing [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/nus-mono3d.py#L93] in the config corresponds to the test set instead of validation set.

After generating the results, you can basically compress the folder and upload to the evalAI evaluation server for nuScenes 3D detection challenge.




Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that we can have an intuitive feeling of the detection results predicted by our trained models.
You can either set the --eval-options 'show=True' 'out_dir=${SHOW_DIR}' option to visualize the detection results online during evaluation,
or using tools/misc/visualize_results.py for offline visualization.

Besides, we also provide scripts tools/misc/browse_dataset.py to visualize the dataset without inference.
Please refer more details in the doc for visualization [https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization].

Note that currently we only support the visualization on images for vision-only methods.
The visualization in the perspective view and bird-eye-view (BEV) will be integrated in the future.







            

          

      

      

    

  

    
      
          
            
  
LiDAR-Based 3D Semantic Segmentation

LiDAR-based 3D semantic segmentation is one of the most basic tasks supported in MMDetection3D.
It expects the given model to take any number of points with features collected by LiDAR as input, and predict the semantic labels for each input point.
Next, taking PointNet++ (SSG) on the ScanNet dataset as an example, we will show how to prepare data, train and test a model on a standard 3D semantic segmentation benchmark, and how to visualize and validate the results.


Data Preparation

To begin with, we need to download the raw data from ScanNet’s official website [http://kaldir.vc.in.tum.de/scannet_benchmark/documentation].

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data information with a .pkl or .json file.

So after getting all the raw data ready, we can follow the instructions presented in ScanNet README doc [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/] to generate data infos.

Afterwards, the related folder structure should be as follows:

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── scannet
│   │   ├── scannet_utils.py
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md
│   │   ├── scans
│   │   ├── scans_test
│   │   ├── scannet_instance_data
│   │   ├── points
│   │   ├── instance_mask
│   │   ├── semantic_mask
│   │   ├── seg_info
│   │   │   ├── train_label_weight.npy
│   │   │   ├── train_resampled_scene_idxs.npy
│   │   │   ├── val_label_weight.npy
│   │   │   ├── val_resampled_scene_idxs.npy
│   │   ├── scannet_infos_train.pkl
│   │   ├── scannet_infos_val.pkl
│   │   ├── scannet_infos_test.pkl








Training

Then let us train a model with provided configs for PointNet++ (SSG).
You can basically follow this tutorial [https://mmdetection3d.readthedocs.io/en/latest/1_exist_data_model.html#inference-with-existing-models] for sample scripts when training with different GPU settings.
Suppose we use 2 GPUs on a single machine with distributed training:

./tools/dist_train.sh configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py 2





Note that 16x2 in the config name refers to the training is completed with 2 GPUs and 16 samples on each GPU.
If your customized setting is different from this, sometimes you need to adjust the learning rate accordingly.
A basic rule can be referred to here [https://arxiv.org/abs/1706.02677].




Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of evaluation = dict(interval=xxx) in the config.
We support official evaluation protocols for different datasets.
For ScanNet, the model will be evaluated with mean Intersection over Union (mIoU) over all 20 categories.
The evaluation results will be printed in the command like:

+---------+--------+--------+---------+--------+--------+--------+--------+--------+--------+-----------+---------+---------+--------+---------+--------------+----------------+--------+--------+---------+----------------+--------+--------+---------+
| classes | wall   | floor  | cabinet | bed    | chair  | sofa   | table  | door   | window | bookshelf | picture | counter | desk   | curtain | refrigerator | showercurtrain | toilet | sink   | bathtub | otherfurniture | miou   | acc    | acc_cls |
+---------+--------+--------+---------+--------+--------+--------+--------+--------+--------+-----------+---------+---------+--------+---------+--------------+----------------+--------+--------+---------+----------------+--------+--------+---------+
| results | 0.7257 | 0.9373 | 0.4625  | 0.6613 | 0.7707 | 0.5562 | 0.5864 | 0.4010 | 0.4558 | 0.7011    | 0.2500  | 0.4645  | 0.4540 | 0.5399  | 0.2802       | 0.3488         | 0.7359 | 0.4971 | 0.6922  | 0.3681         | 0.5444 | 0.8118 | 0.6695  |
+---------+--------+--------+---------+--------+--------+--------+--------+--------+--------+-----------+---------+---------+--------+---------+--------------+----------------+--------+--------+---------+----------------+--------+--------+---------+





In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the following:

./tools/dist_test.sh configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py \
    work_dirs/pointnet2_ssg/latest.pth --eval mIoU








Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark,
you need to replace the --eval mIoU with --format-only in the previous evaluation script and change ann_file=data_root + 'scannet_infos_val.pkl' to ann_file=data_root + 'scannet_infos_test.pkl' in the ScanNet dataset’s config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/scannet_seg-3d-20class.py#L126]. Remember to specify the txt_prefix as the directory to save the testing results,
e.g., adding an option --eval-options txt_prefix=work_dirs/pointnet2_ssg/test_submission.
After generating the results, you can basically compress the folder and upload to the ScanNet evaluation server [http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d].




Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that we can have an intuitive feeling of the segmentation results predicted by our trained models.
You can either set the --eval-options 'show=True' 'out_dir=${SHOW_DIR}' option to visualize the segmentation results online during evaluation,
or using tools/misc/visualize_results.py for offline visualization.
Besides, we also provide scripts tools/misc/browse_dataset.py to visualize the dataset without inference.
Please refer more details in the doc for visualization [https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization].







            

          

      

      

    

  

    
      
          
            
  
KITTI Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for KITTI dataset.

Note: Current tutorial is only for LiDAR-based and multi-modality 3D detection methods. Contents related to monocular methods will be supplemented afterwards.


Prepare dataset

You can download KITTI 3D detection data HERE [http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d] and unzip all zip files. Besides, the road planes could be downloaded from HERE [https://download.openmmlab.com/mmdetection3d/data/train_planes.zip], which are optional for data augmentation during training for better performance. The road planes are generated by AVOD [https://github.com/kujason/avod], you can see more details HERE [https://github.com/kujason/avod/issues/19].

Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   │   ├── planes (optional)






Create KITTI dataset

To create KITTI point cloud data, we load the raw point cloud data and generate the relevant annotations including object labels and bounding boxes. We also generate all single training objects’ point cloud in KITTI dataset and save them as .bin files in data/kitti/kitti_gt_database. Meanwhile, .pkl info files are also generated for training or validation. Subsequently, create KITTI data by running

mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt


python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane





Note that if your local disk does not have enough space for saving converted data, you can change the out-dir to anywhere else, and you need to remove the --with-plane flag if planes are not prepared.

The folder structure after processing should be as below

kitti
├── ImageSets
│   ├── test.txt
│   ├── train.txt
│   ├── trainval.txt
│   ├── val.txt
├── testing
│   ├── calib
│   ├── image_2
│   ├── velodyne
│   ├── velodyne_reduced
├── training
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── velodyne
│   ├── velodyne_reduced
│   ├── planes (optional)
├── kitti_gt_database
│   ├── xxxxx.bin
├── kitti_infos_train.pkl
├── kitti_infos_val.pkl
├── kitti_dbinfos_train.pkl
├── kitti_infos_test.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_train_mono3d.coco.json
├── kitti_infos_trainval_mono3d.coco.json
├── kitti_infos_test_mono3d.coco.json
├── kitti_infos_val_mono3d.coco.json






	kitti_gt_database/xxxxx.bin: point cloud data included in each 3D bounding box of the training dataset


	kitti_infos_train.pkl: training dataset infos, each frame info contains following details:


	info[‘point_cloud’]: {‘num_features’: 4, ‘velodyne_path’: velodyne_path}.


	info[‘annos’]: {


	location: x,y,z are bottom center in referenced camera coordinate system (in meters), an Nx3 array


	dimensions: height, width, length (in meters), an Nx3 array


	rotation_y: rotation ry around Y-axis in camera coordinates [-pi..pi], an N array


	name:  ground truth name array, an N array


	difficulty: kitti difficulty, Easy, Moderate, Hard


	group_ids: used for multi-part object
}






	(optional) info[‘calib’]: {


	P0: camera0 projection matrix after rectification, an 3x4 array


	P1: camera1 projection matrix after rectification, an 3x4 array


	P2: camera2 projection matrix after rectification, an 3x4 array


	P3: camera3 projection matrix after rectification, an 3x4 array


	R0_rect: rectifying rotation matrix, an 4x4 array


	Tr_velo_to_cam: transformation from Velodyne coordinate to camera coordinate, an 4x4 array


	Tr_imu_to_velo: transformation from IMU coordinate to Velodyne coordinate, an 4x4 array
}






	(optional) info[‘image’]:{‘image_idx’: idx, ‘image_path’: image_path, ‘image_shape’, image_shape}.








Note: the info[‘annos’] is in the referenced camera coordinate system. More details please refer to this [http://www.cvlibs.net/publications/Geiger2013IJRR.pdf]

The core function to get kitti_infos_xxx.pkl and kitti_infos_xxx_mono3d.coco.json are get_kitti_image_info [https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_data_utils.py#L140] and get_2d_boxes [https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_converter.py#L378]. Please refer to kitti_converter.py [https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_converter.py] for more details.






Train pipeline

A typical train pipeline of 3D detection on KITTI is as below.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4, # x, y, z, intensity
        use_dim=4, # x, y, z, intensity
        file_client_args=file_client_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        file_client_args=file_client_args),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]






	Data augmentation:


	ObjectNoise: apply noise to each GT objects in the scene.


	RandomFlip3D: randomly flip input point cloud horizontally or vertically.


	GlobalRotScaleTrans: rotate input point cloud.











Evaluation

An example to evaluate PointPillars with 8 GPUs with kitti metrics is as follows:

bash tools/dist_test.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py work_dirs/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/latest.pth 8 --eval bbox








Metrics

KITTI evaluates 3D object detection performance using mean Average Precision (mAP) and Average Orientation Similarity (AOS), Please refer to its official website [http://www.cvlibs.net/datasets/kitti/eval_3dobject.php] and original paper [http://www.cvlibs.net/publications/Geiger2012CVPR.pdf] for more details.

We also adopt this approach for evaluation on KITTI. An example of printed evaluation results is as follows:

Car AP@0.70, 0.70, 0.70:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:90.4196, 87.9491, 85.1700
3d   AP:88.3891, 77.1624, 74.4654
aos  AP:97.70, 89.11, 87.38
Car AP@0.70, 0.50, 0.50:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:98.3509, 90.2042, 89.6102
3d   AP:98.2800, 90.1480, 89.4736
aos  AP:97.70, 89.11, 87.38








Testing and make a submission

An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard is as follows:

mkdir -p results/kitti-3class

./tools/dist_test.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py work_dirs/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/latest.pth 8 --out results/kitti-3class/results_eval.pkl --format-only --eval-options 'pklfile_prefix=results/kitti-3class/kitti_results' 'submission_prefix=results/kitti-3class/kitti_results'





After generating results/kitti-3class/kitti_results/xxxxx.txt files, you can submit these files to KITTI benchmark. Please refer to the KITTI official website [http://www.cvlibs.net/datasets/kitti/index.php] for more details.







            

          

      

      

    

  

    
      
          
            
  
NuScenes Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for nuScenes dataset.


Before Preparation

You can download nuScenes 3D detection data HERE [https://www.nuscenes.org/download] and unzip all zip files.

Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval








Dataset Preparation

We typically need to organize the useful data information with a .pkl or .json file in a specific style, e.g., coco-style for organizing images and their annotations.
To prepare these files for nuScenes, run the following command:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes





The folder structure after processing should be as below.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   │   ├── nuscenes_database
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_val.pkl
│   │   ├── nuscenes_infos_test.pkl
│   │   ├── nuscenes_dbinfos_train.pkl
│   │   ├── nuscenes_infos_train_mono3d.coco.json
│   │   ├── nuscenes_infos_val_mono3d.coco.json
│   │   ├── nuscenes_infos_test_mono3d.coco.json





Here, .pkl files are generally used for methods involving point clouds and coco-style .json files are more suitable for image-based methods, such as image-based 2D and 3D detection.
Next, we will elaborate on the details recorded in these info files.


	nuscenes_database/xxxxx.bin: point cloud data included in each 3D bounding box of the training dataset


	nuscenes_infos_train.pkl: training dataset info, each frame info has two keys: metadata and infos.
metadata contains the basic information for the dataset itself, such as {'version': 'v1.0-trainval'}, while infos contains the detailed information as follows:


	info[‘lidar_path’]: The file path of the lidar point cloud data.


	info[‘token’]: Sample data token.


	info[‘sweeps’]: Sweeps information (sweeps in the nuScenes refer to the intermediate frames without annotations, while samples refer to those key frames with annotations).


	info[‘sweeps’][i][‘data_path’]: The data path of i-th sweep.


	info[‘sweeps’][i][‘type’]: The sweep data type, e.g., 'lidar'.


	info[‘sweeps’][i][‘sample_data_token’]: The sweep sample data token.


	info[‘sweeps’][i][‘sensor2ego_translation’]: The translation from the current sensor (for collecting the sweep data) to ego vehicle. (1x3 list)


	info[‘sweeps’][i][‘sensor2ego_rotation’]: The rotation from the current sensor (for collecting the sweep data) to ego vehicle. (1x4 list in the quaternion format)


	info[‘sweeps’][i][‘ego2global_translation’]: The translation from the ego vehicle to global coordinates. (1x3 list)


	info[‘sweeps’][i][‘ego2global_rotation’]: The rotation from the ego vehicle to global coordinates. (1x4 list in the quaternion format)


	info[‘sweeps’][i][‘timestamp’]: Timestamp of the sweep data.


	info[‘sweeps’][i][‘sensor2lidar_translation’]: The translation from the current sensor (for collecting the sweep data) to lidar. (1x3 list)


	info[‘sweeps’][i][‘sensor2lidar_rotation’]: The rotation from the current sensor (for collecting the sweep data) to lidar. (1x4 list in the quaternion format)






	info[‘cams’]: Cameras calibration information. It contains six keys corresponding to each camera: 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'.
Each dictionary contains detailed information following the above way for each sweep data (has the same keys for each information as above). In addition, each camera has a key 'cam_intrinsic' for recording the intrinsic parameters when projecting 3D points to each image plane.


	info[‘lidar2ego_translation’]: The translation from lidar to ego vehicle. (1x3 list)


	info[‘lidar2ego_rotation’]: The rotation from lidar to ego vehicle. (1x4 list in the quaternion format)


	info[‘ego2global_translation’]: The translation from the ego vehicle to global coordinates. (1x3 list)


	info[‘ego2global_rotation’]: The rotation from the ego vehicle to global coordinates. (1x4 list in the quaternion format)


	info[‘timestamp’]: Timestamp of the sample data.


	info[‘gt_boxes’]: 7-DoF annotations of 3D bounding boxes, an Nx7 array.


	info[‘gt_names’]: Categories of 3D bounding boxes, an 1xN array.


	info[‘gt_velocity’]: Velocities of 3D bounding boxes (no vertical measurements due to inaccuracy), an Nx2 array.


	info[‘num_lidar_pts’]: Number of lidar points included in each 3D bounding box.


	info[‘num_radar_pts’]: Number of radar points included in each 3D bounding box.


	info[‘valid_flag’]: Whether each bounding box is valid. In general, we only take the 3D boxes that include at least one lidar or radar point as valid boxes.






	nuscenes_infos_train_mono3d.coco.json: training dataset coco-style info. This file organizes image-based data into three categories (keys): 'categories', 'images', 'annotations'.


	info[‘categories’]: A list containing all the category names. Each element follows the dictionary format and consists of two keys: 'id' and 'name'.


	info[‘images’]: A list containing all the image info.


	info[‘images’][i][‘file_name’]: The file name of the i-th image.


	info[‘images’][i][‘id’]: Sample data token of the i-th image.


	info[‘images’][i][‘token’]: Sample token corresponding to this frame.


	info[‘images’][i][‘cam2ego_rotation’]: The rotation from the camera to ego vehicle. (1x4 list in the quaternion format)


	info[‘images’][i][‘cam2ego_translation’]: The translation from the camera to ego vehicle. (1x3 list)


	info[‘images’][i][‘ego2global_rotation’’]: The rotation from the ego vehicle to global coordinates. (1x4 list in the quaternion format)


	info[‘images’][i][‘ego2global_translation’]: The translation from the ego vehicle to global coordinates. (1x3 list)


	info[‘images’][i][‘cam_intrinsic’]: Camera intrinsic matrix. (3x3 list)


	info[‘images’][i][‘width’]: Image width, 1600 by default in nuScenes.


	info[‘images’][i][‘height’]: Image height, 900 by default in nuScenes.






	info[‘annotations’]: A list containing all the annotation info.


	info[‘annotations’][i][‘file_name’]: The file name of the corresponding image.


	info[‘annotations’][i][‘image_id’]: The image id (token) of the corresponding image.


	info[‘annotations’][i][‘area’]: Area of the 2D bounding box.


	info[‘annotations’][i][‘category_name’]: Category name.


	info[‘annotations’][i][‘category_id’]: Category id.


	info[‘annotations’][i][‘bbox’]: 2D bounding box annotation (exterior rectangle of the projected 3D box), 1x4 list following [x1, y1, x2-x1, y2-y1].
x1/y1 are minimum coordinates along horizontal/vertical direction of the image.


	info[‘annotations’][i][‘iscrowd’]: Whether the region is crowded. Defaults to 0.


	info[‘annotations’][i][‘bbox_cam3d’]: 3D bounding box (gravity) center location (3), size (3), (global) yaw angle (1), 1x7 list.


	info[‘annotations’][i][‘velo_cam3d’]: Velocities of 3D bounding boxes (no vertical measurements due to inaccuracy), an Nx2 array.


	info[‘annotations’][i][‘center2d’]: Projected 3D-center containing 2.5D information: projected center location on the image (2) and depth (1), 1x3 list.


	info[‘annotations’][i][‘attribute_name’]: Attribute name.


	info[‘annotations’][i][‘attribute_id’]: Attribute id.
We maintain a default attribute collection and mapping for attribute classification.
Please refer to here [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L53] for more details.


	info[‘annotations’][i][‘id’]: Annotation id. Defaults to i.












Here we only explain the data recorded in the training info files. The same applies to validation and testing set.

The core function to get nuscenes_infos_xxx.pkl and nuscenes_infos_xxx_mono3d.coco.json are _fill_trainval_infos [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/nuscenes_converter.py#L143] and get_2d_boxes [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/nuscenes_converter.py#L397], respectively.
Please refer to nuscenes_converter.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/nuscenes_converter.py] for more details.




Training pipeline


LiDAR-Based Methods

A typical training pipeline of LiDAR-based 3D detection (including multi-modality methods) on nuScenes is as below.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]





Compared to general cases, nuScenes has a specific 'LoadPointsFromMultiSweeps' pipeline to load point clouds from consecutive frames. This is a common practice used in this setting.
Please refer to the nuScenes original paper [https://arxiv.org/abs/1903.11027] for more details.
The default use_dim in 'LoadPointsFromMultiSweeps' is [0, 1, 2, 4], where the first 3 dimensions refer to point coordinates and the last refers to timestamp differences.
Intensity is not used by default due to its yielded noise when concatenating the points from different frames.




Vision-Based Methods

A typical training pipeline of image-based 3D detection on nuScenes is as below.

train_pipeline = [
    dict(type='LoadImageFromFileMono3D'),
    dict(
        type='LoadAnnotations3D',
        with_bbox=True,
        with_label=True,
        with_attr_label=True,
        with_bbox_3d=True,
        with_label_3d=True,
        with_bbox_depth=True),
    dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d',
            'gt_labels_3d', 'centers2d', 'depths'
        ]),
]





It follows the general pipeline of 2D detection while differs in some details:


	It uses monocular pipelines to load images, which includes additional required information like camera intrinsics.


	It needs to load 3D annotations.


	Some data augmentation techniques need to be adjusted, such as RandomFlip3D.
Currently we do not support more augmentation methods, because how to transfer and apply other techniques is still under explored.









Evaluation

An example to evaluate PointPillars with 8 GPUs with nuScenes metrics is as follows.

bash ./tools/dist_test.sh configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth 8 --eval bbox








Metrics

NuScenes proposes a comprehensive metric, namely nuScenes detection score (NDS), to evaluate different methods and set up the benchmark.
It consists of mean Average Precision (mAP), Average Translation Error (ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average Velocity Error (AVE) and Average Attribute Error (AAE).
Please refer to its official website [https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any] for more details.

We also adopt this approach for evaluation on nuScenes. An example of printed evaluation results is as follows:

mAP: 0.3197
mATE: 0.7595
mASE: 0.2700
mAOE: 0.4918
mAVE: 1.3307
mAAE: 0.1724
NDS: 0.3905
Eval time: 170.8s

Per-class results:
Object Class    AP      ATE     ASE     AOE     AVE     AAE
car     0.503   0.577   0.152   0.111   2.096   0.136
truck   0.223   0.857   0.224   0.220   1.389   0.179
bus     0.294   0.855   0.204   0.190   2.689   0.283
trailer 0.081   1.094   0.243   0.553   0.742   0.167
construction_vehicle    0.058   1.017   0.450   1.019   0.137   0.341
pedestrian      0.392   0.687   0.284   0.694   0.876   0.158
motorcycle      0.317   0.737   0.265   0.580   2.033   0.104
bicycle 0.308   0.704   0.299   0.892   0.683   0.010
traffic_cone    0.555   0.486   0.309   nan     nan     nan
barrier 0.466   0.581   0.269   0.169   nan     nan








Testing and make a submission

An example to test PointPillars on nuScenes with 8 GPUs and generate a submission to the leaderboard is as follows.

./tools/dist_test.sh configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py work_dirs/pp-nus/latest.pth 8 --out work_dirs/pp-nus/results_eval.pkl --format-only --eval-options 'jsonfile_prefix=work_dirs/pp-nus/results_eval'





Note that the testing info should be changed to that for testing set instead of validation set here [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/nus-3d.py#L132].

After generating the work_dirs/pp-nus/results_eval.json, you can compress it and submit it to nuScenes benchmark. Please refer to the nuScenes official website [https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any] for more information.

We can also visualize the prediction results with our developed visualization tools. Please refer to the visualization doc [https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization] for more details.




Notes


Transformation between NuScenesBox and our CameraInstanceBoxes.

In general, the main difference of NuScenesBox and our CameraInstanceBoxes is mainly reflected in the yaw definition. NuScenesBox defines the rotation with a quaternion or three Euler angles while ours only defines one yaw angle due to the practical scenario. It requires us to add some additional rotations manually in the pre-processing and post-processing, such as here [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L673].

In addition, please note that the definition of corners and locations are detached in the NuScenesBox. For example, in monocular 3D detection, the definition of the box location is in its camera coordinate (see its official illustration [https://www.nuscenes.org/nuscenes#data-collection] for car setup), which is consistent with ours [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/cam_box3d.py]. In contrast, its corners are defined with the convention [https://github.com/nutonomy/nuscenes-devkit/blob/02e9200218977193a1058dd7234f935834378319/python-sdk/nuscenes/utils/data_classes.py#L527] “x points forward, y to the left, z up”. It results in different philosophy of dimension and rotation definitions from our CameraInstanceBoxes. An example to remove similar hacks is PR #744 [https://github.com/open-mmlab/mmdetection3d/pull/744]. The same problem also exists in the LiDAR system. To deal with them, we typically add some transformation in the pre-processing and post-processing to guarantee the box will be in our coordinate system during the entire training and inference procedure.









            

          

      

      

    

  

    
      
          
            
  
Lyft Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for Lyft dataset.


Before Preparation

You can download Lyft 3D detection data HERE [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data] and unzip all zip files.

Like the general way to prepare a dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── lyft
│   │   ├── v1.01-train
│   │   │   ├── v1.01-train (train_data)
│   │   │   ├── lidar (train_lidar)
│   │   │   ├── images (train_images)
│   │   │   ├── maps (train_maps)
│   │   ├── v1.01-test
│   │   │   ├── v1.01-test (test_data)
│   │   │   ├── lidar (test_lidar)
│   │   │   ├── images (test_images)
│   │   │   ├── maps (test_maps)
│   │   ├── train.txt
│   │   ├── val.txt
│   │   ├── test.txt
│   │   ├── sample_submission.csv





Here v1.01-train and v1.01-test contain the metafiles which are similar to those of nuScenes. .txt files contain the data split information.
Lyft does not have an official split for training and validation set, so we provide a split considering the number of objects from different categories in different scenes.
sample_submission.csv is the base file for submission on the Kaggle evaluation server.
Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above.




Dataset Preparation

The way to organize Lyft dataset is similar to nuScenes. We also generate the .pkl and .json files which share almost the same structure.
Next, we will mainly focus on the difference between these two datasets. For a more detailed explanation of the info structure, please refer to nuScenes tutorial [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/datasets/nuscenes_det].

To prepare info files for Lyft, run the following commands:

python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-tag lyft --version v1.01
python tools/data_converter/lyft_data_fixer.py --version v1.01 --root-folder ./data/lyft





Note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the discussion here [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000] for more details.

The folder structure after processing should be as below.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── lyft
│   │   ├── v1.01-train
│   │   │   ├── v1.01-train (train_data)
│   │   │   ├── lidar (train_lidar)
│   │   │   ├── images (train_images)
│   │   │   ├── maps (train_maps)
│   │   ├── v1.01-test
│   │   │   ├── v1.01-test (test_data)
│   │   │   ├── lidar (test_lidar)
│   │   │   ├── images (test_images)
│   │   │   ├── maps (test_maps)
│   │   ├── train.txt
│   │   ├── val.txt
│   │   ├── test.txt
│   │   ├── sample_submission.csv
│   │   ├── lyft_infos_train.pkl
│   │   ├── lyft_infos_val.pkl
│   │   ├── lyft_infos_test.pkl
│   │   ├── lyft_infos_train_mono3d.coco.json
│   │   ├── lyft_infos_val_mono3d.coco.json
│   │   ├── lyft_infos_test_mono3d.coco.json





Here, .pkl files are generally used for methods involving point clouds, and coco-style .json files are more suitable for image-based methods, such as image-based 2D and 3D detection.
Different from nuScenes, we only support using the json files for 2D detection experiments. Image-based 3D detection may be further supported in the future.

Next, we will elaborate on the difference compared to nuScenes in terms of the details recorded in these info files.


	without lyft_database/xxxxx.bin: This folder and .bin files are not extracted on the Lyft dataset due to the negligible effect of ground-truth sampling in the experiments.


	lyft_infos_train.pkl: training dataset infos, each frame info has two keys: metadata and infos.
metadata contains the basic information for the dataset itself, such as {'version': 'v1.01-train'}, while infos contains the detailed information the same as nuScenes except for the following details:


	info[‘sweeps’]: Sweeps information.


	info[‘sweeps’][i][‘type’]: The sweep data type, e.g., 'lidar'.
Lyft has different LiDAR settings for some samples, but we always take only the points collected by the top LiDAR for the consistency of data distribution.






	info[‘gt_names’]: There are 9 categories on the Lyft dataset, and the imbalance of annotations for different categories is even more significant than nuScenes.


	without info[‘gt_velocity’]: There is no velocity measurement on Lyft.


	info[‘num_lidar_pts’]: Set to -1 by default.


	info[‘num_radar_pts’]: Set to 0 by default.


	without info[‘valid_flag’]: This flag does recorded due to invalid num_lidar_pts and num_radar_pts.






	nuscenes_infos_train_mono3d.coco.json: training dataset coco-style info. This file only contains 2D information, without the information required by 3D detection, such as camera intrinsics.


	info[‘images’]: A list containing all the image info.


	only containing 'file_name', 'id', 'width', 'height'.






	info[‘annotations’]: A list containing all the annotation info.


	only containing 'file_name', 'image_id', 'area', 'category_name', 'category_id', 'bbox', 'is_crowd', 'segmentation', 'id', where 'is_crowd', 'segmentation' are set to 0 and [] by default.
There is no attribute annotation on Lyft.












Here we only explain the data recorded in the training info files. The same applies to the testing set.

The core function to get lyft_infos_xxx.pkl is _fill_trainval_infos [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/lyft_converter.py#L93].
Please refer to lyft_converter.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/lyft_converter.py] for more details.




Training pipeline


LiDAR-Based Methods

A typical training pipeline of LiDAR-based 3D detection (including multi-modality methods) on Lyft is almost the same as nuScenes as below.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]





Similar to nuScenes, models on Lyft also need the 'LoadPointsFromMultiSweeps' pipeline to load point clouds from consecutive frames.
In addition, considering the intensity of LiDAR points collected by Lyft is invalid, we also set the use_dim in 'LoadPointsFromMultiSweeps' to [0, 1, 2, 4] by default,
where the first 3 dimensions refer to point coordinates, and the last refers to timestamp differences.






Evaluation

An example to evaluate PointPillars with 8 GPUs with Lyft metrics is as follows.

bash ./tools/dist_test.sh configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py checkpoints/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818-fc6904c3.pth 8 --eval bbox








Metrics

Lyft proposes a more strict metric for evaluating the predicted 3D bounding boxes.
The basic criteria to judge whether a predicted box is positive or not is the same as KITTI, i.e. the 3D Intersection over Union (IoU).
However, it adopts a way similar to COCO to compute the mean average precision (mAP) – compute the average precision under different thresholds of 3D IoU from 0.5-0.95.
Actually, overlap more than 0.7 3D IoU is a quite strict criterion for 3D detection methods, so the overall performance seems a little low.
The imbalance of annotations for different categories is another important reason for the finally lower results compared to other datasets.
Please refer to its official website [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/overview/evaluation] for more details about the definition of this metric.

We employ this official method for evaluation on Lyft. An example of printed evaluation results is as follows:

+mAPs@0.5:0.95------+--------------+
| class             | mAP@0.5:0.95 |
+-------------------+--------------+
| animal            | 0.0          |
| bicycle           | 0.099        |
| bus               | 0.177        |
| car               | 0.422        |
| emergency_vehicle | 0.0          |
| motorcycle        | 0.049        |
| other_vehicle     | 0.359        |
| pedestrian        | 0.066        |
| truck             | 0.176        |
| Overall           | 0.15         |
+-------------------+--------------+








Testing and make a submission

An example to test PointPillars on Lyft with 8 GPUs and generate a submission to the leaderboard is as follows.

./tools/dist_test.sh configs/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py work_dirs/pp-lyft/latest.pth 8 --out work_dirs/pp-lyft/results_challenge.pkl --format-only --eval-options 'jsonfile_prefix=work_dirs/pp-lyft/results_challenge' 'csv_savepath=results/pp-lyft/results_challenge.csv'





After generating the work_dirs/pp-lyft/results_challenge.csv, you can submit it to the Kaggle evaluation server. Please refer to the official website [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles] for more information.

We can also visualize the prediction results with our developed visualization tools. Please refer to the visualization doc [https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization] for more details.







            

          

      

      

    

  

    
      
          
            
  
Waymo Dataset

This page provides specific tutorials about the usage of MMDetection3D for Waymo dataset.


Prepare dataset

Before preparing Waymo dataset, if you only installed requirements in requirements/build.txt and requirements/runtime.txt before, please install the official package for this dataset at first by running

# tf 2.1.0.
pip install waymo-open-dataset-tf-2-1-0==1.2.0
# tf 2.0.0
# pip install waymo-open-dataset-tf-2-0-0==1.2.0
# tf 1.15.0
# pip install waymo-open-dataset-tf-1-15-0==1.2.0





or

pip install -r requirements/optional.txt





Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.
Due to the original Waymo data format is based on tfrecord, we need to preprocess the raw data for convenient usage in the training and evaluation procedure. Our approach is to convert them into KITTI format.

The folder structure should be organized as follows before our processing.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── waymo
│   │   ├── waymo_format
│   │   │   ├── training
│   │   │   ├── validation
│   │   │   ├── testing
│   │   │   ├── gt.bin
│   │   ├── kitti_format
│   │   │   ├── ImageSets





You can download Waymo open dataset V1.2 HERE [https://waymo.com/open/download/] and its data split HERE [https://drive.google.com/drive/folders/18BVuF_RYJF0NjZpt8SnfzANiakoRMf0o?usp=sharing]. Then put tfrecord files into corresponding folders in data/waymo/waymo_format/ and put the data split txt files into data/waymo/kitti_format/ImageSets. Download ground truth bin files for validation set HERE [https://console.cloud.google.com/storage/browser/waymo_open_dataset_v_1_2_0/validation/ground_truth_objects] and put it into data/waymo/waymo_format/. A tip is that you can use gsutil to download the large-scale dataset with commands. You can take this tool [https://github.com/RalphMao/Waymo-Dataset-Tool] as an example for more details. Subsequently, prepare Waymo data by running

python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 128 --extra-tag waymo





Note that if your local disk does not have enough space for saving converted data, you can change the --out-dir to anywhere else. Just remember to create folders and prepare data there in advance and link them back to data/waymo/kitti_format after the data conversion.

After the data conversion, the folder structure and info files should be organized as below.

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── waymo
│   │   ├── waymo_format
│   │   │   ├── training
│   │   │   ├── validation
│   │   │   ├── testing
│   │   │   ├── gt.bin
│   │   ├── kitti_format
│   │   │   ├── ImageSets
│   │   │   ├── training
│   │   │   │   ├── calib
│   │   │   │   ├── image_0
│   │   │   │   ├── image_1
│   │   │   │   ├── image_2
│   │   │   │   ├── image_3
│   │   │   │   ├── image_4
│   │   │   │   ├── label_0
│   │   │   │   ├── label_1
│   │   │   │   ├── label_2
│   │   │   │   ├── label_3
│   │   │   │   ├── label_4
│   │   │   │   ├── label_all
│   │   │   │   ├── pose
│   │   │   │   ├── velodyne
│   │   │   ├── testing
│   │   │   │   ├── (the same as training)
│   │   │   ├── waymo_gt_database
│   │   │   ├── waymo_infos_trainval.pkl
│   │   │   ├── waymo_infos_train.pkl
│   │   │   ├── waymo_infos_val.pkl
│   │   │   ├── waymo_infos_test.pkl
│   │   │   ├── waymo_dbinfos_train.pkl





Here because there are several cameras, we store the corresponding image and labels that can be projected to that camera respectively and save pose for further usage of consecutive frames point clouds. We use a coding way {a}{bbb}{ccc} to name the data for each frame, where a is the prefix for different split (0 for training, 1 for validation and 2 for testing), bbb for segment index and ccc for frame index. You can easily locate the required frame according to this naming rule. We gather the data for training and validation together as KITTI and store the indices for different set in the ImageSet files.




Training

Considering there are many similar frames in the original dataset, we can basically use a subset to train our model primarily. In our preliminary baselines, we load one frame every five frames, and thanks to our hyper parameters settings and data augmentation, we obtain a better result compared with the performance given in the original dataset paper [https://arxiv.org/pdf/1912.04838.pdf]. For more details about the configuration and performance, please refer to README.md in the configs/pointpillars/. A more complete benchmark based on other settings and methods is coming soon.




Evaluation

For evaluation on Waymo, please follow the instruction [https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md/] to build the binary file compute_detection_metrics_main for metrics computation and put it into mmdet3d/core/evaluation/waymo_utils/.  Basically, you can follow the commands below to install bazel and build the file.

# download the code and enter the base directory
git clone https://github.com/waymo-research/waymo-open-dataset.git waymo-od
cd waymo-od
git checkout remotes/origin/master

# use the Bazel build system
sudo apt-get install --assume-yes pkg-config zip g++ zlib1g-dev unzip python3 python3-pip
BAZEL_VERSION=3.1.0
wget https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh
sudo bash bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh
sudo apt install build-essential

# configure .bazelrc
./configure.sh
# delete previous bazel outputs and reset internal caches
bazel clean

bazel build waymo_open_dataset/metrics/tools/compute_detection_metrics_main
cp bazel-bin/waymo_open_dataset/metrics/tools/compute_detection_metrics_main ../mmdetection3d/mmdet3d/core/evaluation/waymo_utils/





Then you can evaluate your models on Waymo. An example to evaluate PointPillars on Waymo with 8 GPUs with Waymo metrics is as follows.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car.py \
    checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth --out results/waymo-car/results_eval.pkl \
    --eval waymo --eval-options 'pklfile_prefix=results/waymo-car/kitti_results' \
    'submission_prefix=results/waymo-car/kitti_results'





pklfile_prefix should be given in the --eval-options if the bin file is needed to be generated. For metrics, waymo is the recommended official evaluation prototype. Currently, evaluating with choice kitti is adapted from KITTI and the results for each difficulty are not exactly the same as the definition of KITTI. Instead, most of objects are marked with difficulty 0 currently, which will be fixed in the future. The reasons of its instability include the large computation for evaluation, the lack of occlusion and truncation in the converted data, different definitions of difficulty and different methods of computing Average Precision.

Notice:


	Sometimes when using bazel to build compute_detection_metrics_main, an error 'round' is not a member of 'std' may appear. We just need to remove the std:: before round in that file.


	Considering it takes a little long time to evaluate once, we recommend to evaluate only once at the end of model training.


	To use TensorFlow with CUDA 9, it is recommended to compile it from source. Apart from official tutorials, you can refer to this link [https://github.com/SmileTM/Tensorflow2.X-GPU-CUDA9.0] for possibly suitable precompiled packages and useful information for compiling it from source.







Testing and make a submission

An example to test PointPillars on Waymo with 8 GPUs, generate the bin files and make a submission to the leaderboard.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car.py \
    checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth --out results/waymo-car/results_eval.pkl \
    --format-only --eval-options 'pklfile_prefix=results/waymo-car/kitti_results' \
    'submission_prefix=results/waymo-car/kitti_results'





After generating the bin file, you can simply build the binary file create_submission and use them to create a submission file by following the instruction [https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md/]. Basically, here are some example commands.

cd ../waymo-od/
bazel build waymo_open_dataset/metrics/tools/create_submission
cp bazel-bin/waymo_open_dataset/metrics/tools/create_submission ../mmdetection3d/mmdet3d/core/evaluation/waymo_utils/
vim waymo_open_dataset/metrics/tools/submission.txtpb  # set the metadata information
cp waymo_open_dataset/metrics/tools/submission.txtpb ../mmdetection3d/mmdet3d/core/evaluation/waymo_utils/

cd ../mmdetection3d
# suppose the result bin is in `results/waymo-car/submission`
mmdet3d/core/evaluation/waymo_utils/create_submission  --input_filenames='results/waymo-car/kitti_results_test.bin' --output_filename='results/waymo-car/submission/model' --submission_filename='mmdet3d/core/evaluation/waymo_utils/submission.txtpb'

tar cvf results/waymo-car/submission/my_model.tar results/waymo-car/submission/my_model/
gzip results/waymo-car/submission/my_model.tar





For evaluation on the validation set with the eval server, you can also use the same way to generate a submission. Make sure you change the fields in submission.txtpb before running the command above.







            

          

      

      

    

  

    
      
          
            
  
SUN RGB-D for 3D Object Detection


Dataset preparation

For the overall process, please refer to the README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/sunrgbd/README.md/] page for SUN RGB-D.


Download SUN RGB-D data and toolbox

Download SUNRGBD data HERE [http://rgbd.cs.princeton.edu/data/]. Then, move SUNRGBD.zip, SUNRGBDMeta2DBB_v2.mat, SUNRGBDMeta3DBB_v2.mat and SUNRGBDtoolbox.zip to the OFFICIAL_SUNRGBD folder, unzip the zip files.

The directory structure before data preparation should be as below:

sunrgbd
├── README.md
├── matlab
│   ├── extract_rgbd_data_v1.m
│   ├── extract_rgbd_data_v2.m
│   ├── extract_split.m
├── OFFICIAL_SUNRGBD
│   ├── SUNRGBD
│   ├── SUNRGBDMeta2DBB_v2.mat
│   ├── SUNRGBDMeta3DBB_v2.mat
│   ├── SUNRGBDtoolbox








Extract data and annotations for 3D detection from raw data

Extract SUN RGB-D annotation data from raw annotation data by running (this requires MATLAB installed on your machine):

matlab -nosplash -nodesktop -r 'extract_split;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v2;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v1;quit;'





The main steps include:


	Extract train and val split.


	Extract data for 3D detection from raw data.


	Extract and format detection annotation from raw data.




The main component of extract_rgbd_data_v2.m which extracts point cloud data from depth map is as follows:

data = SUNRGBDMeta(imageId);
data.depthpath(1:16) = '';
data.depthpath = strcat('../OFFICIAL_SUNRGBD', data.depthpath);
data.rgbpath(1:16) = '';
data.rgbpath = strcat('../OFFICIAL_SUNRGBD', data.rgbpath);

% extract point cloud from depth map
[rgb,points3d,depthInpaint,imsize]=read3dPoints(data);
rgb(isnan(points3d(:,1)),:) = [];
points3d(isnan(points3d(:,1)),:) = [];
points3d_rgb = [points3d, rgb];

% MAT files are 3x smaller than TXT files. In Python we can use
% scipy.io.loadmat('xxx.mat')['points3d_rgb'] to load the data.
mat_filename = strcat(num2str(imageId,'%06d'), '.mat');
txt_filename = strcat(num2str(imageId,'%06d'), '.txt');
% save point cloud data
parsave(strcat(depth_folder, mat_filename), points3d_rgb);





The main component of extract_rgbd_data_v1.m which extracts annotation is as follows:

% Write 2D and 3D box label
data2d = data;
fid = fopen(strcat(det_label_folder, txt_filename), 'w');
for j = 1:length(data.groundtruth3DBB)
    centroid = data.groundtruth3DBB(j).centroid;  % 3D bbox center
    classname = data.groundtruth3DBB(j).classname;  % class name
    orientation = data.groundtruth3DBB(j).orientation;  % 3D bbox orientation
    coeffs = abs(data.groundtruth3DBB(j).coeffs);  % 3D bbox size
    box2d = data2d.groundtruth2DBB(j).gtBb2D;  % 2D bbox
    fprintf(fid, '%s %d %d %d %d %f %f %f %f %f %f %f %f\n', classname, box2d(1), box2d(2), box2d(3), box2d(4), centroid(1), centroid(2), centroid(3), coeffs(1), coeffs(2), coeffs(3), orientation(1), orientation(2));
end
fclose(fid);





The above two scripts call functions such as read3dPoints from the toolbox [https://rgbd.cs.princeton.edu/data/SUNRGBDtoolbox.zip] provided by SUN RGB-D.

The directory structure after extraction should be as follows.

sunrgbd
├── README.md
├── matlab
│   ├── extract_rgbd_data_v1.m
│   ├── extract_rgbd_data_v2.m
│   ├── extract_split.m
├── OFFICIAL_SUNRGBD
│   ├── SUNRGBD
│   ├── SUNRGBDMeta2DBB_v2.mat
│   ├── SUNRGBDMeta3DBB_v2.mat
│   ├── SUNRGBDtoolbox
├── sunrgbd_trainval
│   ├── calib
│   ├── depth
│   ├── image
│   ├── label
│   ├── label_v1
│   ├── seg_label
│   ├── train_data_idx.txt
│   ├── val_data_idx.txt





Under each following folder there are overall 5285 train files and 5050 val files:


	calib: Camera calibration information in .txt


	depth: Point cloud saved in .mat (xyz+rgb)


	image: Image data in .jpg


	label: Detection annotation data in .txt (version 2)


	label_v1: Detection annotation data in .txt (version 1)


	seg_label: Segmentation annotation data in .txt




Currently, we use v1 data for training and testing, so the version 2 labels are unused.




Create dataset

Please run the command below to create the dataset.

python tools/create_data.py sunrgbd --root-path ./data/sunrgbd \
--out-dir ./data/sunrgbd --extra-tag sunrgbd





or (if in a slurm environment)

bash tools/create_data.sh <job_name> sunrgbd





The above point cloud data are further saved in .bin format. Meanwhile .pkl info files are also generated for saving annotation and metadata. The core function process_single_scene of getting data infos is as follows.

def process_single_scene(sample_idx):
    print(f'{self.split} sample_idx: {sample_idx}')
    # convert depth to points
    # and downsample the points
    SAMPLE_NUM = 50000
    pc_upright_depth = self.get_depth(sample_idx)
    pc_upright_depth_subsampled = random_sampling(
        pc_upright_depth, SAMPLE_NUM)

    info = dict()
    pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
    info['point_cloud'] = pc_info

    # save point cloud data in `.bin` format
    mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points'))
    pc_upright_depth_subsampled.tofile(
        osp.join(self.root_dir, 'points', f'{sample_idx:06d}.bin'))

    # save point cloud file path
    info['pts_path'] = osp.join('points', f'{sample_idx:06d}.bin')

    # save image file path and metainfo
    img_path = osp.join('image', f'{sample_idx:06d}.jpg')
    image_info = {
        'image_idx': sample_idx,
        'image_shape': self.get_image_shape(sample_idx),
        'image_path': img_path
    }
    info['image'] = image_info

    # save calibration information
    K, Rt = self.get_calibration(sample_idx)
    calib_info = {'K': K, 'Rt': Rt}
    info['calib'] = calib_info

    # save all annotation
    if has_label:
        obj_list = self.get_label_objects(sample_idx)
        annotations = {}
        annotations['gt_num'] = len([
            obj.classname for obj in obj_list
            if obj.classname in self.cat2label.keys()
        ])
        if annotations['gt_num'] != 0:
            # class name
            annotations['name'] = np.array([
                obj.classname for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ])
            # 2D image bounding boxes
            annotations['bbox'] = np.concatenate([
                obj.box2d.reshape(1, 4) for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ], axis=0)
            # 3D bounding box center location (in depth coordinate system)
            annotations['location'] = np.concatenate([
                obj.centroid.reshape(1, 3) for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ], axis=0)
            # 3D bounding box dimension/size (in depth coordinate system)
            annotations['dimensions'] = 2 * np.array([
                [obj.l, obj.h, obj.w] for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ])
            # 3D bounding box rotation angle/yaw angle (in depth coordinate system)
            annotations['rotation_y'] = np.array([
                obj.heading_angle for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ])
            annotations['index'] = np.arange(
                len(obj_list), dtype=np.int32)
            # class label (number)
            annotations['class'] = np.array([
                self.cat2label[obj.classname] for obj in obj_list
                if obj.classname in self.cat2label.keys()
            ])
            # 3D bounding box (in depth coordinate system)
            annotations['gt_boxes_upright_depth'] = np.stack(
                [
                    obj.box3d for obj in obj_list
                    if obj.classname in self.cat2label.keys()
                ], axis=0)  # (K,8)
        info['annos'] = annotations
    return info





The directory structure after processing should be as follows.

sunrgbd
├── README.md
├── matlab
│   ├── ...
├── OFFICIAL_SUNRGBD
│   ├── ...
├── sunrgbd_trainval
│   ├── ...
├── points
├── sunrgbd_infos_train.pkl
├── sunrgbd_infos_val.pkl






	points/0xxxxx.bin: The point cloud data after downsample.


	sunrgbd_infos_train.pkl: The train data infos, the detailed info of each scene is as follows:


	info[‘point_cloud’]: ·{‘num_features’: 6, ‘lidar_idx’: sample_idx}, wheresample_idx` is the index of the scene.


	info[‘pts_path’]: The path of points/0xxxxx.bin.


	info[‘image’]: The image path and metainfo:


	image[‘image_idx’]: The index of the image.


	image[‘image_shape’]: The shape of the image tensor.


	image[‘image_path’]: The path of the image.






	info[‘annos’]: The annotations of each scene.


	annotations[‘gt_num’]: The number of ground truths.


	annotations[‘name’]: The semantic name of all ground truths, e.g. chair.


	annotations[‘location’]: The gravity center of the 3D bounding boxes in depth coordinate system. Shape: [K, 3], K is the number of ground truths.


	annotations[‘dimensions’]: The dimensions of the 3D bounding boxes in depth coordinate system, i.e. (x_size, y_size, z_size), shape: [K, 3].


	annotations[‘rotation_y’]: The yaw angle of the 3D bounding boxes in depth coordinate system. Shape: [K, ].


	annotations[‘gt_boxes_upright_depth’]: The 3D bounding boxes in depth coordinate system, each bounding box is (x, y, z, x_size, y_size, z_size, yaw), shape: [K, 7].


	annotations[‘bbox’]: The 2D bounding boxes, each bounding box is (x, y, x_size, y_size), shape: [K, 4].


	annotations[‘index’]: The index of all ground truths, range [0, K).


	annotations[‘class’]: The train class id of the bounding boxes, value range: [0, 10), shape: [K, ].










	sunrgbd_infos_val.pkl: The val data infos, which shares the same format as sunrgbd_infos_train.pkl.









Train pipeline

A typical train pipeline of SUN RGB-D for point cloud only 3D detection is as follows.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadAnnotations3D'),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(type='PointSample', num_points=20000),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]





Data augmentation for point clouds:


	RandomFlip3D: randomly flip the input point cloud horizontally or vertically.


	GlobalRotScaleTrans: rotate the input point cloud, usually in the range of [-30, 30] (degrees) for SUN RGB-D; then scale the input point cloud, usually in the range of [0.85, 1.15] for SUN RGB-D; finally translate the input point cloud, usually by 0 for SUN RGB-D (which means no translation).


	PointSample: downsample the input point cloud.




A typical train pipeline of SUN RGB-D for multi-modality (point cloud and image) 3D detection is as follows.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations3D'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 600), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.0),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(type='PointSample', num_points=20000),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'img', 'gt_bboxes', 'gt_labels', 'points', 'gt_bboxes_3d',
            'gt_labels_3d'
        ])
]





Data augmentation/normalization for images:


	Resize: resize the input image, keep_ratio=True means the ratio of the image is kept unchanged.


	Normalize: normalize the RGB channels of the input image.


	RandomFlip: randomly flip the input image.


	Pad: pad the input image with zeros by default.




The image augmentation and normalization functions are implemented in MMDetection [https://github.com/open-mmlab/mmdetection/tree/master/mmdet/datasets/pipelines].




Metrics

Same as ScanNet, typically mean Average Precision (mAP) is used for evaluation on SUN RGB-D, e.g. mAP@0.25 and mAP@0.5. In detail, a generic function to compute precision and recall for 3D object detection for multiple classes is called, please refer to indoor_eval [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/evaluation/indoor_eval.py].

Since SUN RGB-D consists of image data, detection on image data is also feasible. For instance, in ImVoteNet, we first train an image detector, and we also use mAP for evaluation, e.g. mAP@0.5. We use the eval_map function from MMDetection [https://github.com/open-mmlab/mmdetection] to calculate mAP.







            

          

      

      

    

  

    
      
          
            
  
ScanNet for 3D Object Detection


Dataset preparation

For the overall process, please refer to the README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/] page for ScanNet.


Export ScanNet point cloud data

By exporting ScanNet data, we load the raw point cloud data and generate the relevant annotations including semantic labels, instance labels and ground truth bounding boxes.

python batch_load_scannet_data.py





The directory structure before data preparation should be as below

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
│   │   │   ├── scenexxxx_xx
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md





Under folder scans there are overall 1201 train and 312 validation folders in which raw point cloud data and relevant annotations are saved. For instance, under folder scene0001_01 the files are as below:


	scene0001_01_vh_clean_2.ply: Mesh file storing coordinates and colors of each vertex. The mesh’s vertices are taken as raw point cloud data.


	scene0001_01.aggregation.json: Aggregation file including object ID, segments ID and label.


	scene0001_01_vh_clean_2.0.010000.segs.json: Segmentation file including segments ID and vertex.


	scene0001_01.txt: Meta file including axis-aligned matrix, etc.


	scene0001_01_vh_clean_2.labels.ply: Annotation file containing the category of each vertex.




Export ScanNet data by running python batch_load_scannet_data.py. The main steps include:


	Export original files to point cloud, instance label, semantic label and bounding box file.


	Downsample raw point cloud and filter invalid classes.


	Save point cloud data and relevant annotation files.




And the core function export in load_scannet_data.py is as follows:

def export(mesh_file,
           agg_file,
           seg_file,
           meta_file,
           label_map_file,
           output_file=None,
           test_mode=False):

    # label map file: ./data/scannet/meta_data/scannetv2-labels.combined.tsv
    # the various label standards in the label map file, e.g. 'nyu40id'
    label_map = scannet_utils.read_label_mapping(
        label_map_file, label_from='raw_category', label_to='nyu40id')
    # load raw point cloud data, 6-dims feature: XYZRGB
    mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)

    # Load scene axis alignment matrix: a 4x4 transformation matrix
    # transform raw points in sensor coordinate system to a coordinate system
    # which is axis-aligned with the length/width of the room
    lines = open(meta_file).readlines()
    # test set data doesn't have align_matrix
    axis_align_matrix = np.eye(4)
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [
                float(x)
                for x in line.rstrip().strip('axisAlignment = ').split(' ')
            ]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))

    # perform global alignment of mesh vertices
    pts = np.ones((mesh_vertices.shape[0], 4))
    # raw point cloud in homogeneous coordinates, each row: [x, y, z, 1]
    pts[:, 0:3] = mesh_vertices[:, 0:3]
    # transform raw mesh vertices to aligned mesh vertices
    pts = np.dot(pts, axis_align_matrix.transpose())  # Nx4
    aligned_mesh_vertices = np.concatenate([pts[:, 0:3], mesh_vertices[:, 3:]],
                                           axis=1)

    # Load semantic and instance labels
    if not test_mode:
        # each object has one semantic label and consists of several segments
        object_id_to_segs, label_to_segs = read_aggregation(agg_file)
        # many points may belong to the same segment
        seg_to_verts, num_verts = read_segmentation(seg_file)
        label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
        object_id_to_label_id = {}
        for label, segs in label_to_segs.items():
            label_id = label_map[label]
            for seg in segs:
                verts = seg_to_verts[seg]
                # each point has one semantic label
                label_ids[verts] = label_id
        instance_ids = np.zeros(
            shape=(num_verts), dtype=np.uint32)  # 0: unannotated
        for object_id, segs in object_id_to_segs.items():
            for seg in segs:
                verts = seg_to_verts[seg]
                # object_id is 1-indexed, i.e. 1,2,3,.,,,.NUM_INSTANCES
                # each point belongs to one object
                instance_ids[verts] = object_id
                if object_id not in object_id_to_label_id:
                    object_id_to_label_id[object_id] = label_ids[verts][0]
        # bbox format is [x, y, z, x_size, y_size, z_size, label_id]
        # [x, y, z] is gravity center of bbox, [x_size, y_size, z_size] is axis-aligned
        # [label_id] is semantic label id in 'nyu40id' standard
        # Note: since 3D bbox is axis-aligned, the yaw is 0.
        unaligned_bboxes = extract_bbox(mesh_vertices, object_id_to_segs,
                                        object_id_to_label_id, instance_ids)
        aligned_bboxes = extract_bbox(aligned_mesh_vertices, object_id_to_segs,
                                      object_id_to_label_id, instance_ids)
    ...

    return mesh_vertices, label_ids, instance_ids, unaligned_bboxes, \
        aligned_bboxes, object_id_to_label_id, axis_align_matrix





After exporting each scan, the raw point cloud could be downsampled, e.g. to 50000, if the number of points is too large (the raw point cloud won’t be downsampled if it’s also used in 3D semantic segmentation task). In addition, invalid semantic labels outside of nyu40id standard or optional DONOT CARE classes should be filtered. Finally, the point cloud data, semantic labels, instance labels and ground truth bounding boxes should be saved in .npy files.




Export ScanNet RGB data (optional)

By exporting ScanNet RGB data, for each scene we load a set of RGB images with corresponding 4x4 pose matrices, and a single 4x4 camera intrinsic matrix. Note, that this step is optional and can be skipped if multi-view detection is not planned to use.

python extract_posed_images.py





Each of 1201 train, 312 validation and 100 test scenes contains a single .sens file. For instance, for scene 0001_01 we have data/scannet/scans/scene0001_01/0001_01.sens. For this scene all images and poses are extracted to data/scannet/posed_images/scene0001_01. Specifically, there will be 300 image files xxxxx.jpg, 300 camera pose files xxxxx.txt and a single intrinsic.txt file. Typically, single scene contains several thousand images. By default, we extract only 300 of them with resulting space occupation of <100 Gb. To extract more images, use --max-images-per-scene parameter.




Create dataset

python tools/create_data.py scannet --root-path ./data/scannet \
--out-dir ./data/scannet --extra-tag scannet





The above exported point cloud file, semantic label file and instance label file are further saved in .bin format. Meanwhile .pkl info files are also generated for train or validation. The core function process_single_scene of getting data infos is as follows.

def process_single_scene(sample_idx):

    # save point cloud, instance label and semantic label in .bin file respectively, get info['pts_path'], info['pts_instance_mask_path'] and info['pts_semantic_mask_path']
    ...

    # get annotations
    if has_label:
        annotations = {}
        # box is of shape [k, 6 + class]
        aligned_box_label = self.get_aligned_box_label(sample_idx)
        unaligned_box_label = self.get_unaligned_box_label(sample_idx)
        annotations['gt_num'] = aligned_box_label.shape[0]
        if annotations['gt_num'] != 0:
            aligned_box = aligned_box_label[:, :-1]  # k, 6
            unaligned_box = unaligned_box_label[:, :-1]
            classes = aligned_box_label[:, -1]  # k
            annotations['name'] = np.array([
                self.label2cat[self.cat_ids2class[classes[i]]]
                for i in range(annotations['gt_num'])
            ])
            # default names are given to aligned bbox for compatibility
            # we also save unaligned bbox info with marked names
            annotations['location'] = aligned_box[:, :3]
            annotations['dimensions'] = aligned_box[:, 3:6]
            annotations['gt_boxes_upright_depth'] = aligned_box
            annotations['unaligned_location'] = unaligned_box[:, :3]
            annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
            annotations[
                'unaligned_gt_boxes_upright_depth'] = unaligned_box
            annotations['index'] = np.arange(
                annotations['gt_num'], dtype=np.int32)
            annotations['class'] = np.array([
                self.cat_ids2class[classes[i]]
                for i in range(annotations['gt_num'])
            ])
        axis_align_matrix = self.get_axis_align_matrix(sample_idx)
        annotations['axis_align_matrix'] = axis_align_matrix  # 4x4
        info['annos'] = annotations
    return info





The directory structure after process should be as below

scannet
├── meta_data
├── batch_load_scannet_data.py
├── load_scannet_data.py
├── scannet_utils.py
├── README.md
├── scans
├── scans_test
├── scannet_instance_data
├── points
│   ├── xxxxx.bin
├── instance_mask
│   ├── xxxxx.bin
├── semantic_mask
│   ├── xxxxx.bin
├── seg_info
│   ├── train_label_weight.npy
│   ├── train_resampled_scene_idxs.npy
│   ├── val_label_weight.npy
│   ├── val_resampled_scene_idxs.npy
├── posed_images
│   ├── scenexxxx_xx
│   │   ├── xxxxxx.txt
│   │   ├── xxxxxx.jpg
│   │   ├── intrinsic.txt
├── scannet_infos_train.pkl
├── scannet_infos_val.pkl
├── scannet_infos_test.pkl






	points/xxxxx.bin: The axis-unaligned point cloud data after downsample. Since ScanNet 3D detection task takes axis-aligned point clouds as input, while ScanNet 3D semantic segmentation task takes unaligned points, we choose to store unaligned points and their axis-align transform matrix. Note: the points would be axis-aligned in pre-processing pipeline GlobalAlignment [https://github.com/open-mmlab/mmdetection3d/blob/9f0b01caf6aefed861ef4c3eb197c09362d26b32/mmdet3d/datasets/pipelines/transforms_3d.py#L423] of 3D detection task.


	instance_mask/xxxxx.bin: The instance label for each point, value range: [0, NUM_INSTANCES], 0: unannotated.


	semantic_mask/xxxxx.bin: The semantic label for each point, value range: [1, 40], i.e. nyu40id standard. Note: the nyu40id ID will be mapped to train ID in train pipeline PointSegClassMapping.


	posed_images/scenexxxx_xx: The set of .jpg images with .txt 4x4 poses and the single .txt file with camera intrinsic matrix.


	scannet_infos_train.pkl: The train data infos, the detailed info of each scan is as follows:


	info[‘point_cloud’]: {‘num_features’: 6, ‘lidar_idx’: sample_idx}.


	info[‘pts_path’]: The path of points/xxxxx.bin.


	info[‘pts_instance_mask_path’]: The path of instance_mask/xxxxx.bin.


	info[‘pts_semantic_mask_path’]: The path of semantic_mask/xxxxx.bin.


	info[‘annos’]: The annotations of each scan.


	annotations[‘gt_num’]: The number of ground truths.


	annotations[‘name’]： The semantic name of all ground truths, e.g. chair.


	annotations[‘location’]: The gravity center of the axis-aligned 3D bounding boxes in depth coordinate system. Shape: [K, 3], K is the number of ground truths.


	annotations[‘dimensions’]: The dimensions of the axis-aligned 3D bounding boxes in depth coordinate system, i.e. (x_size, y_size, z_size), shape: [K, 3].


	annotations[‘gt_boxes_upright_depth’]: The axis-aligned 3D bounding boxes in depth coordinate system, each bounding box is (x, y, z, x_size, y_size, z_size), shape: [K, 6].


	annotations[‘unaligned_location’]: The gravity center of the axis-unaligned 3D bounding boxes in depth coordinate system.


	annotations[‘unaligned_dimensions’]: The dimensions of the axis-unaligned 3D bounding boxes in depth coordinate system.


	annotations[‘unaligned_gt_boxes_upright_depth’]: The axis-unaligned 3D bounding boxes in depth coordinate system.


	annotations[‘index’]: The index of all ground truths, i.e. [0, K).


	annotations[‘class’]: The train class ID of the bounding boxes, value range: [0, 18), shape: [K, ].










	scannet_infos_val.pkl: The val data infos, which shares the same format as scannet_infos_train.pkl.


	scannet_infos_test.pkl: The test data infos, which almost shares the same format as scannet_infos_train.pkl except for the lack of annotation.









Training pipeline

A typical training pipeline of ScanNet for 3D detection is as follows.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_mask_3d=True,
        with_seg_3d=True),
    dict(type='GlobalAlignment', rotation_axis=2),
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39),
        max_cat_id=40),
    dict(type='PointSample', num_points=40000),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.087266, 0.087266],
        scale_ratio_range=[1.0, 1.0],
        shift_height=True),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]






	GlobalAlignment: The previous point cloud would be axis-aligned using the axis-aligned matrix.


	PointSegClassMapping: Only the valid category IDs will be mapped to class label IDs like [0, 18) during training.


	Data augmentation:


	PointSample: downsample the input point cloud.


	RandomFlip3D: randomly flip the input point cloud horizontally or vertically.


	GlobalRotScaleTrans: rotate the input point cloud, usually in the range of [-5, 5] (degrees) for ScanNet; then scale the input point cloud, usually by 1.0 for ScanNet (which means no scaling); finally translate the input point cloud, usually by 0 for ScanNet  (which means no translation).











Metrics

Typically mean Average Precision (mAP) is used for evaluation on ScanNet, e.g. mAP@0.25 and mAP@0.5. In detail, a generic function to compute precision and recall for 3D object detection for multiple classes is called, please refer to indoor_eval [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3D/core/evaluation/indoor_eval.py].

As introduced in section Export ScanNet data, all ground truth 3D bounding box are axis-aligned, i.e. the yaw is zero. So the yaw target of network predicted 3D bounding box is also zero and axis-aligned 3D Non-Maximum Suppression (NMS), which is regardless of rotation, is adopted during post-processing .







            

          

      

      

    

  

    
      
          
            
  
ScanNet for 3D Semantic Segmentation


Dataset preparation

The overall process is similar to ScanNet 3D detection task. Please refer to this section [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/datasets/scannet_det.md#dataset-preparation]. Only a few differences and additional information about the 3D semantic segmentation data will be listed below.


Export ScanNet data

Since ScanNet provides online benchmark for 3D semantic segmentation evaluation on the test set, we need to also download the test scans and put it under scannet folder.

The directory structure before data preparation should be as below:

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
│   │   │   ├── scenexxxx_xx
│   │   ├── scans_test
│   │   │   ├── scenexxxx_xx
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md





Under folder scans_test there are 100 test folders in which only raw point cloud data and its meta file are saved. For instance, under folder scene0707_00 the files are as below:


	scene0707_00_vh_clean_2.ply: Mesh file storing coordinates and colors of each vertex. The mesh’s vertices are taken as raw point cloud data.


	scene0707_00.txt: Meta file including sensor parameters, etc. Note: different from data under scans, axis-aligned matrix is not provided for test scans.




Export ScanNet data by running python batch_load_scannet_data.py. Note: only point cloud data will be saved for test set scans because no annotations are provided.




Create dataset

Similar to the 3D detection task, we create dataset by running python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet.
The directory structure after processing should be as below:

scannet
├── scannet_utils.py
├── batch_load_scannet_data.py
├── load_scannet_data.py
├── scannet_utils.py
├── README.md
├── scans
├── scans_test
├── scannet_instance_data
├── points
│   ├── xxxxx.bin
├── instance_mask
│   ├── xxxxx.bin
├── semantic_mask
│   ├── xxxxx.bin
├── seg_info
│   ├── train_label_weight.npy
│   ├── train_resampled_scene_idxs.npy
│   ├── val_label_weight.npy
│   ├── val_resampled_scene_idxs.npy
├── scannet_infos_train.pkl
├── scannet_infos_val.pkl
├── scannet_infos_test.pkl






	seg_info: The generated infos to support semantic segmentation model training.


	train_label_weight.npy: Weighting factor for each semantic class. Since the number of points in different classes varies greatly, it’s a common practice to use label re-weighting to get a better performance.


	train_resampled_scene_idxs.npy: Re-sampling index for each scene. Different rooms will be sampled multiple times according to their number of points to balance training data.













Training pipeline

A typical training pipeline of ScanNet for 3D semantic segmentation is as below:

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
        use_dim=[0, 1, 2, 3, 4, 5]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_mask_3d=False,
        with_seg_3d=True),
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39),
        max_cat_id=40),
    dict(
        type='IndoorPatchPointSample',
        num_points=num_points,
        block_size=1.5,
        ignore_index=len(class_names),
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None),
    dict(type='NormalizePointsColor', color_mean=None),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]






	PointSegClassMapping: Only the valid category ids will be mapped to class label ids like [0, 20) during training. Other class ids will be converted to ignore_index which equals to 20.


	IndoorPatchPointSample: Crop a patch containing a fixed number of points from input point cloud. block_size indicates the size of the cropped block, typically 1.5 for ScanNet.


	NormalizePointsColor: Normalize the RGB color values of input point cloud by dividing 255.







Metrics

Typically mean Intersection over Union (mIoU) is used for evaluation on ScanNet. In detail, we first compute IoU for multiple classes and then average them to get mIoU, please refer to seg_eval [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/evaluation/seg_eval.py].




Testing and Making a Submission

By default, our codebase evaluates semantic segmentation results on the validation set.
If you would like to test the model performance on the online benchmark, add --format-only flag in the evaluation script and change ann_file=data_root + 'scannet_infos_val.pkl' to ann_file=data_root + 'scannet_infos_test.pkl' in the ScanNet dataset’s config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/scannet_seg-3d-20class.py#L126]. Remember to specify the txt_prefix as the directory to save the testing results.

Taking PointNet++ (SSG) on ScanNet for example, the following command can be used to do inference on test set:

./tools/dist_test.sh configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py \
    work_dirs/pointnet2_ssg/latest.pth --format-only \
    --eval-options txt_prefix=work_dirs/pointnet2_ssg/test_submission





After generating the results, you can basically compress the folder and upload to the ScanNet evaluation server [http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d].







            

          

      

      

    

  

    
      
          
            
  
S3DIS for 3D Semantic Segmentation


Dataset preparation

For the overall process, please refer to the README [https://github.com/open-mmlab/mmdetection3d/blob/master/data/s3dis/README.md/] page for S3DIS.


Export S3DIS data

By exporting S3DIS data, we load the raw point cloud data and generate the relevant annotations including semantic labels and instance labels.

The directory structure before exporting should be as below:

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── s3dis
│   │   ├── meta_data
│   │   ├── Stanford3dDataset_v1.2_Aligned_Version
│   │   │   ├── Area_1
│   │   │   │   ├── conferenceRoom_1
│   │   │   │   ├── office_1
│   │   │   │   ├── ...
│   │   │   ├── Area_2
│   │   │   ├── Area_3
│   │   │   ├── Area_4
│   │   │   ├── Area_5
│   │   │   ├── Area_6
│   │   ├── indoor3d_util.py
│   │   ├── collect_indoor3d_data.py
│   │   ├── README.md





Under folder Stanford3dDataset_v1.2_Aligned_Version, the rooms are spilted into 6 areas. We use 5 areas for training and 1 for evaluation (typically Area_5). Under the directory of each area, there are folders in which raw point cloud data and relevant annotations are saved. For instance, under folder Area_1/office_1 the files are as below:


	office_1.txt: A txt file storing coordinates and colors of each point in the raw point cloud data.


	Annotations/: This folder contains txt files for different object instances. Each txt file represents one instance, e.g.


	chair_1.txt: A txt file storing raw point cloud data of one chair in this room.




If we concat all the txt files under Annotations/, we will get the same point cloud as denoted by office_1.txt.





Export S3DIS data by running python collect_indoor3d_data.py. The main steps include:


	Export original txt files to point cloud, instance label and semantic label.


	Save point cloud data and relevant annotation files.




And the core function export in indoor3d_util.py is as follows:

def export(anno_path, out_filename):
    """Convert original dataset files to points, instance mask and semantic
    mask files. We aggregated all the points from each instance in the room.

    Args:
        anno_path (str): path to annotations. e.g. Area_1/office_2/Annotations/
        out_filename (str): path to save collected points and labels.
        file_format (str): txt or numpy, determines what file format to save.

    Note:
        the points are shifted before save, the most negative point is now
            at origin.
    """
    points_list = []
    ins_idx = 1  # instance ids should be indexed from 1, so 0 is unannotated

    # an example of `anno_path`: Area_1/office_1/Annotations
    # which contains all object instances in this room as txt files
    for f in glob.glob(osp.join(anno_path, '*.txt')):
        # get class name of this instance
        one_class = osp.basename(f).split('_')[0]
        if one_class not in class_names:  # some rooms have 'staris' class
            one_class = 'clutter'
        points = np.loadtxt(f)
        labels = np.ones((points.shape[0], 1)) * class2label[one_class]
        ins_labels = np.ones((points.shape[0], 1)) * ins_idx
        ins_idx += 1
        points_list.append(np.concatenate([points, labels, ins_labels], 1))

    data_label = np.concatenate(points_list, 0)  # [N, 8], (pts, rgb, sem, ins)
    # align point cloud to the origin
    xyz_min = np.amin(data_label, axis=0)[0:3]
    data_label[:, 0:3] -= xyz_min

    np.save(f'{out_filename}_point.npy', data_label[:, :6].astype(np.float32))
    np.save(f'{out_filename}_sem_label.npy', data_label[:, 6].astype(np.int))
    np.save(f'{out_filename}_ins_label.npy', data_label[:, 7].astype(np.int))





where we load and concatenate all the point cloud instances under Annotations/ to form raw point cloud and generate semantic/instance labels. After exporting each room, the point cloud data, semantic labels and instance labels should be saved in .npy files.




Create dataset

python tools/create_data.py s3dis --root-path ./data/s3dis \
--out-dir ./data/s3dis --extra-tag s3dis





The above exported point cloud files, semantic label files and instance label files are further saved in .bin format. Meanwhile .pkl info files are also generated for each area.

The directory structure after process should be as below:

s3dis
├── meta_data
├── indoor3d_util.py
├── collect_indoor3d_data.py
├── README.md
├── Stanford3dDataset_v1.2_Aligned_Version
├── s3dis_data
├── points
│   ├── xxxxx.bin
├── instance_mask
│   ├── xxxxx.bin
├── semantic_mask
│   ├── xxxxx.bin
├── seg_info
│   ├── Area_1_label_weight.npy
│   ├── Area_1_resampled_scene_idxs.npy
│   ├── Area_2_label_weight.npy
│   ├── Area_2_resampled_scene_idxs.npy
│   ├── Area_3_label_weight.npy
│   ├── Area_3_resampled_scene_idxs.npy
│   ├── Area_4_label_weight.npy
│   ├── Area_4_resampled_scene_idxs.npy
│   ├── Area_5_label_weight.npy
│   ├── Area_5_resampled_scene_idxs.npy
│   ├── Area_6_label_weight.npy
│   ├── Area_6_resampled_scene_idxs.npy
├── s3dis_infos_Area_1.pkl
├── s3dis_infos_Area_2.pkl
├── s3dis_infos_Area_3.pkl
├── s3dis_infos_Area_4.pkl
├── s3dis_infos_Area_5.pkl
├── s3dis_infos_Area_6.pkl






	points/xxxxx.bin: The exported point cloud data.


	instance_mask/xxxxx.bin: The instance label for each point, value range: [0, ${NUM_INSTANCES}], 0: unannotated.


	semantic_mask/xxxxx.bin: The semantic label for each point, value range: [0, 12].


	s3dis_infos_Area_1.pkl: Area 1 data infos, the detailed info of each room is as follows:


	info[‘point_cloud’]: {‘num_features’: 6, ‘lidar_idx’: sample_idx}.


	info[‘pts_path’]: The path of points/xxxxx.bin.


	info[‘pts_instance_mask_path’]: The path of instance_mask/xxxxx.bin.


	info[‘pts_semantic_mask_path’]: The path of semantic_mask/xxxxx.bin.






	seg_info: The generated infos to support semantic segmentation model training.


	Area_1_label_weight.npy: Weighting factor for each semantic class. Since the number of points in different classes varies greatly, it’s a common practice to use label re-weighting to get a better performance.


	Area_1_resampled_scene_idxs.npy: Re-sampling index for each scene. Different rooms will be sampled multiple times according to their number of points to balance training data.













Training pipeline

A typical training pipeline of S3DIS for 3D semantic segmentation is as below.

class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
num_points = 4096
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
        use_dim=[0, 1, 2, 3, 4, 5]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_mask_3d=False,
        with_seg_3d=True),
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=tuple(range(len(class_names))),
        max_cat_id=13),
    dict(
        type='IndoorPatchPointSample',
        num_points=num_points,
        block_size=1.0,
        ignore_index=None,
        use_normalized_coord=True,
        enlarge_size=None,
        min_unique_num=num_points // 4,
        eps=0.0),
    dict(type='NormalizePointsColor', color_mean=None),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-3.141592653589793, 3.141592653589793],  # [-pi, pi]
        scale_ratio_range=[0.8, 1.2],
        translation_std=[0, 0, 0]),
    dict(
        type='RandomJitterPoints',
        jitter_std=[0.01, 0.01, 0.01],
        clip_range=[-0.05, 0.05]),
    dict(type='RandomDropPointsColor', drop_ratio=0.2),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]






	PointSegClassMapping: Only the valid category ids will be mapped to class label ids like [0, 13) during training. Other class ids will be converted to ignore_index which equals to 13.


	IndoorPatchPointSample: Crop a patch containing a fixed number of points from input point cloud. block_size indicates the size of the cropped block, typically 1.0 for S3DIS.


	NormalizePointsColor: Normalize the RGB color values of input point cloud by dividing 255.


	Data augmentation:


	GlobalRotScaleTrans: randomly rotate and scale input point cloud.


	RandomJitterPoints: randomly jitter point cloud by adding different noise vector to each point.


	RandomDropPointsColor: set the colors of point cloud to all zeros by a probability drop_ratio.











Metrics

Typically mean intersection over union (mIoU) is used for evaluation on S3DIS. In detail, we first compute IoU for multiple classes and then average them to get mIoU, please refer to seg_eval.py [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/evaluation/seg_eval.py].

As introduced in section Export S3DIS data, S3DIS trains on 5 areas and evaluates on the remaining 1 area. But there are also other area split schemes in different papers.
To enable flexible combination of train-val splits, we use sub-dataset to represent one area, and concatenate them to form a larger training set. An example of training on area 1, 2, 3, 4, 6 and evaluating on area 5 is shown as below:

dataset_type = 'S3DISSegDataset'
data_root = './data/s3dis/'
class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
train_area = [1, 2, 3, 4, 6]
test_area = 5
data = dict(
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_files=[
            data_root + f's3dis_infos_Area_{i}.pkl' for i in train_area
        ],
        pipeline=train_pipeline,
        classes=class_names,
        test_mode=False,
        ignore_index=len(class_names),
        scene_idxs=[
            data_root + f'seg_info/Area_{i}_resampled_scene_idxs.npy'
            for i in train_area
        ]),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_files=data_root + f's3dis_infos_Area_{test_area}.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        test_mode=True,
        ignore_index=len(class_names),
        scene_idxs=data_root +
        f'seg_info/Area_{test_area}_resampled_scene_idxs.npy'))





where we specify the areas used for training/validation by setting ann_files and scene_idxs with lists that include corresponding paths. The train-val split can be simply modified via changing the train_area and test_area variables.







            

          

      

      

    

  

    
      
          
            
  
Tutorial 1: Learn about Configs

We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.
You may also pass --options xxx.yyy=zzz to see updated config.


Config File Structure

There are 4 basic component types under config/_base_, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of each like SECOND, PointPillars, PartA2, and VoteNet.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods.
For example, if some modification is made based on PointPillars, user may first inherit the basic PointPillars structure by specifying _base_ = ../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn under configs,

Please refer to mmcv [https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html] for detailed documentation.




Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_{backbone}_[neck]_[norm setting]_[misc]_[batch_per_gpu x gpu]_{schedule}_{dataset}





{xxx} is required field and [yyy] is optional.


	{model}: model type like hv_pointpillars (Hard Voxelization PointPillars), VoteNet, etc.


	[model setting]: specific setting for some model.


	{backbone}: backbone type like regnet-400mf, regnet-1.6gf.


	[neck]: neck type like fpn, secfpn.


	[norm_setting]: bn (Batch Normalization) is used unless specified, other norm layer type could be gn (Group Normalization), sbn (Synchronized Batch Normalization).
gn-head/gn-neck indicates GN is applied in head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.


	[misc]: miscellaneous setting/plugins of model, e.g. strong-aug means using stronger augmentation strategies for training.


	[batch_per_gpu x gpu]: samples per GPU and GPUs, 4x8 is used by default.


	{schedule}: training schedule, options are 1x, 2x, 20e, etc.
1x and 2x means 12 epochs and 24 epochs respectively.
20e is adopted in cascade models, which denotes 20 epochs.
For 1x/2x, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs.
For 20e, initial learning rate decays by a factor of 10 at the 16th and 19th epochs.


	{dataset}: dataset like nus-3d, kitti-3d, lyft-3d, scannet-3d, sunrgbd-3d. We also indicate the number of classes we are using if there exist multiple settings, e.g., kitti-3d-3class and kitti-3d-car means training on KITTI dataset with 3 classes and single class, respectively.







Deprecated train_cfg/test_cfg

Following MMDetection, the train_cfg and test_cfg are deprecated in config file, please specify them in the model config. The original config structure is as below.

# deprecated
model = dict(
   type=...,
   ...
)
train_cfg=dict(...)
test_cfg=dict(...)





The migration example is as below.

# recommended
model = dict(
   type=...,
   ...
   train_cfg=dict(...),
   test_cfg=dict(...)
)








An example of VoteNet

model = dict(
    type='VoteNet',  # The type of detector, refer to mmdet3d.models.detectors for more details
    backbone=dict(
        type='PointNet2SASSG',  # The type of the backbone， refer to mmdet3d.models.backbones for more details
        in_channels=4,  # Input channels of point cloud
        num_points=(2048, 1024, 512, 256),  # The number of points which each SA module samples
        radius=(0.2, 0.4, 0.8, 1.2),  # Radius for each set abstraction layer
        num_samples=(64, 32, 16, 16),  # Number of samples for each set abstraction layer
        sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                     (128, 128, 256)),  # Out channels of each mlp in SA module
        fp_channels=((256, 256), (256, 256)),  # Out channels of each mlp in FP module
        norm_cfg=dict(type='BN2d'),  # Config of normalization layer
        sa_cfg=dict(  # Config of point set abstraction (SA) module
            type='PointSAModule',  # type of SA module
            pool_mod='max',  # Pool method ('max' or 'avg') for SA modules
            use_xyz=True,  # Whether to use xyz as features during feature gathering
            normalize_xyz=True)),  # Whether to use normalized xyz as feature during feature gathering
    bbox_head=dict(
        type='VoteHead',  # The type of bbox head, refer to mmdet3d.models.dense_heads for more details
        num_classes=18,  # Number of classes for classification
        bbox_coder=dict(
            type='PartialBinBasedBBoxCoder',  # The type of bbox_coder, refer to mmdet3d.core.bbox.coders for more details
            num_sizes=18,  # Number of size clusters
            num_dir_bins=1,   # Number of bins to encode direction angle
            with_rot=False,  # Whether the bbox is with rotation
            mean_sizes=[[0.76966727, 0.8116021, 0.92573744],
                        [1.876858, 1.8425595, 1.1931566],
                        [0.61328, 0.6148609, 0.7182701],
                        [1.3955007, 1.5121545, 0.83443564],
                        [0.97949594, 1.0675149, 0.6329687],
                        [0.531663, 0.5955577, 1.7500148],
                        [0.9624706, 0.72462326, 1.1481868],
                        [0.83221924, 1.0490936, 1.6875663],
                        [0.21132214, 0.4206159, 0.5372846],
                        [1.4440073, 1.8970833, 0.26985747],
                        [1.0294262, 1.4040797, 0.87554324],
                        [1.3766412, 0.65521795, 1.6813129],
                        [0.6650819, 0.71111923, 1.298853],
                        [0.41999173, 0.37906948, 1.7513971],
                        [0.59359556, 0.5912492, 0.73919016],
                        [0.50867593, 0.50656086, 0.30136237],
                        [1.1511526, 1.0546296, 0.49706793],
                        [0.47535285, 0.49249494, 0.5802117]]),  # Mean sizes for each class, the order is consistent with class_names.
        vote_moudule_cfg=dict(  # Config of vote module branch, refer to mmdet3d.models.model_utils for more details
            in_channels=256,  # Input channels for vote_module
            vote_per_seed=1,  # Number of votes to generate for each seed
            gt_per_seed=3,  # Number of gts for each seed
            conv_channels=(256, 256),  # Channels for convolution
            conv_cfg=dict(type='Conv1d'),  # Config of convolution
            norm_cfg=dict(type='BN1d'),  # Config of normalization
            norm_feats=True,  # Whether to normalize features
            vote_loss=dict(  # Config of the loss function for voting branch
                type='ChamferDistance',  # Type of loss for voting branch
                mode='l1',  # Loss mode of voting branch
                reduction='none',  # Specifies the reduction to apply to the output
                loss_dst_weight=10.0)),  # Destination loss weight of the voting branch
        vote_aggregation_cfg=dict(  # Config of vote aggregation branch
            type='PointSAModule',  # type of vote aggregation module
            num_point=256,  # Number of points for the set abstraction layer in vote aggregation branch
            radius=0.3,  # Radius for the set abstraction layer in vote aggregation branch
            num_sample=16,  # Number of samples for the set abstraction layer in vote aggregation branch
            mlp_channels=[256, 128, 128, 128],  # Mlp channels for the set abstraction layer in vote aggregation branch
            use_xyz=True,  # Whether to use xyz
            normalize_xyz=True),  # Whether to normalize xyz
        feat_channels=(128, 128),  # Channels for feature convolution
        conv_cfg=dict(type='Conv1d'),  # Config of convolution
        norm_cfg=dict(type='BN1d'),  # Config of normalization
        objectness_loss=dict(  # Config of objectness loss
            type='CrossEntropyLoss',  # Type of loss
            class_weight=[0.2, 0.8],  # Class weight of the objectness loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=5.0),  # Loss weight of the objectness loss
        center_loss=dict(  # Config of center loss
            type='ChamferDistance',  # Type of loss
            mode='l2',  # Loss mode of center loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_src_weight=10.0,  # Source loss weight of the voting branch.
            loss_dst_weight=10.0),  # Destination loss weight of the voting branch.
        dir_class_loss=dict(  # Config of direction classification loss
            type='CrossEntropyLoss',  # Type of loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=1.0),  # Loss weight of the direction classification loss
        dir_res_loss=dict(  # Config of direction residual loss
            type='SmoothL1Loss',  # Type of loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=10.0),  # Loss weight of the direction residual loss
        size_class_loss=dict(  # Config of size classification loss
            type='CrossEntropyLoss',  # Type of loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=1.0),  # Loss weight of the size classification loss
        size_res_loss=dict(  # Config of size residual loss
            type='SmoothL1Loss',  # Type of loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=3.3333333333333335),  # Loss weight of the size residual loss
        semantic_loss=dict(  # Config of semantic loss
            type='CrossEntropyLoss',  # Type of loss
            reduction='sum',  # Specifies the reduction to apply to the output
            loss_weight=1.0)),  # Loss weight of the semantic loss
    train_cfg = dict(  # Config of training hyperparameters for VoteNet
        pos_distance_thr=0.3,  # distance >= threshold 0.3 will be taken as positive samples
        neg_distance_thr=0.6,  # distance < threshold 0.6 will be taken as negative samples
        sample_mod='vote'),  # Mode of the sampling method
    test_cfg = dict(  # Config of testing hyperparameters for VoteNet
        sample_mod='seed',  # Mode of the sampling method
        nms_thr=0.25,  # The threshold to be used during NMS
        score_thr=0.8,  # Threshold to filter out boxes
        per_class_proposal=False))  # Whether to use per_class_proposal
dataset_type = 'ScanNetDataset'  # Type of the dataset
data_root = './data/scannet/'  # Root path of the data
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')  # Names of classes
train_pipeline = [  # Training pipeline, refer to mmdet3d.datasets.pipelines for more details
    dict(
        type='LoadPointsFromFile',  # First pipeline to load points, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
        shift_height=True,  # Whether to use shifted height
        load_dim=6,  # The dimension of the loaded points
        use_dim=[0, 1, 2]),  # Which dimensions of the points to be used
    dict(
        type='LoadAnnotations3D',  # Second pipeline to load annotations, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
        with_bbox_3d=True,  # Whether to load 3D boxes
        with_label_3d=True,  # Whether to load 3D labels corresponding to each 3D box
        with_mask_3d=True,  # Whether to load 3D instance masks
        with_seg_3d=True),  # Whether to load 3D semantic masks
    dict(
        type='PointSegClassMapping',  # Declare valid categories, refer to mmdet3d.datasets.pipelines.point_seg_class_mapping for more details
        valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39),  # all valid categories ids
        max_cat_id=40),  # max possible category id in input segmentation mask
    dict(type='PointSample',  # Sample points, refer to mmdet3d.datasets.pipelines.transforms_3d for more details
            num_points=40000),  # Number of points to be sampled
    dict(type='IndoorFlipData',  # Augmentation pipeline that flip points and 3d boxes
        flip_ratio_yz=0.5,  # Probability of being flipped along yz plane
        flip_ratio_xz=0.5),  # Probability of being flipped along xz plane
    dict(
        type='IndoorGlobalRotScale',  # Augmentation pipeline that rotate and scale points and 3d boxes, refer to mmdet3d.datasets.pipelines.indoor_augment for more details
        shift_height=True,  # Whether the loaded points use `shift_height` attribute
        rot_range=[-0.027777777777777776, 0.027777777777777776],  # Range of rotation
        scale_range=None),  # Range of scale
    dict(
        type='DefaultFormatBundle3D',  # Default format bundle to gather data in the pipeline, refer to mmdet3d.datasets.pipelines.formatting for more details
        class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                     'window', 'bookshelf', 'picture', 'counter', 'desk',
                     'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                     'sink', 'bathtub', 'garbagebin')),
    dict(
        type='Collect3D',  # Pipeline that decides which keys in the data should be passed to the detector, refer to mmdet3d.datasets.pipelines.formatting for more details
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]
test_pipeline = [  # Testing pipeline, refer to mmdet3d.datasets.pipelines for more details
    dict(
        type='LoadPointsFromFile',  # First pipeline to load points, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
        shift_height=True,  # Whether to use shifted height
        load_dim=6,  # The dimension of the loaded points
        use_dim=[0, 1, 2]),  # Which dimensions of the points to be used
    dict(type='PointSample',  # Sample points, refer to mmdet3d.datasets.pipelines.transforms_3d for more details
        num_points=40000),  # Number of points to be sampled
    dict(
        type='DefaultFormatBundle3D',  # Default format bundle to gather data in the pipeline, refer to mmdet3d.datasets.pipelines.formatting for more details
        class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                     'window', 'bookshelf', 'picture', 'counter', 'desk',
                     'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                     'sink', 'bathtub', 'garbagebin')),
    dict(type='Collect3D',  # Pipeline that decides which keys in the data should be passed to the detector, refer to mmdet3d.datasets.pipelines.formatting for more details
        keys=['points'])
]
eval_pipeline = [  # Pipeline used for evaluation or visualization, refer to mmdet3d.datasets.pipelines for more details
    dict(
        type='LoadPointsFromFile',  # First pipeline to load points, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
        shift_height=True,  # Whether to use shifted height
        load_dim=6,  # The dimension of the loaded points
        use_dim=[0, 1, 2]),  # Which dimensions of the points to be used
    dict(
        type='DefaultFormatBundle3D',  # Default format bundle to gather data in the pipeline, refer to mmdet3d.datasets.pipelines.formatting for more details
        class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                     'window', 'bookshelf', 'picture', 'counter', 'desk',
                     'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                     'sink', 'bathtub', 'garbagebin')),
        with_label=False),
    dict(type='Collect3D',  # Pipeline that decides which keys in the data should be passed to the detector, refer to mmdet3d.datasets.pipelines.formatting for more details
        keys=['points'])
]
data = dict(
    samples_per_gpu=8,  # Batch size of a single GPU
    workers_per_gpu=4,  # Number of workers to pre-fetch data for each single GPU
    train=dict(  # Train dataset config
        type='RepeatDataset',  # Wrapper of dataset, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/dataset_wrappers.py for details.
        times=5,  # Repeat times
        dataset=dict(
            type='ScanNetDataset',  # Type of dataset
            data_root='./data/scannet/',  # Root path of the data
            ann_file='./data/scannet/scannet_infos_train.pkl',  # Ann path of the data
            pipeline=[  # pipeline, this is passed by the train_pipeline created before.
                dict(
                    type='LoadPointsFromFile',
                    shift_height=True,
                    load_dim=6,
                    use_dim=[0, 1, 2]),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    with_mask_3d=True,
                    with_seg_3d=True),
                dict(
                    type='PointSegClassMapping',
                    valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
                                   28, 33, 34, 36, 39),
                    max_cat_id=40),
                dict(type='PointSample', num_points=40000),
                dict(
                    type='IndoorFlipData',
                    flip_ratio_yz=0.5,
                    flip_ratio_xz=0.5),
                dict(
                    type='IndoorGlobalRotScale',
                    shift_height=True,
                    rot_range=[-0.027777777777777776, 0.027777777777777776],
                    scale_range=None),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
                                 'door', 'window', 'bookshelf', 'picture',
                                 'counter', 'desk', 'curtain', 'refrigerator',
                                 'showercurtrain', 'toilet', 'sink', 'bathtub',
                                 'garbagebin')),
                dict(
                    type='Collect3D',
                    keys=[
                        'points', 'gt_bboxes_3d', 'gt_labels_3d',
                        'pts_semantic_mask', 'pts_instance_mask'
                    ])
            ],
            filter_empty_gt=False,  # Whether to filter empty ground truth boxes
            classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                     'window', 'bookshelf', 'picture', 'counter', 'desk',
                     'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                     'sink', 'bathtub', 'garbagebin'))),  # Names of classes
    val=dict(  # Validation dataset config
        type='ScanNetDataset',  # Type of dataset
        data_root='./data/scannet/',  # Root path of the data
        ann_file='./data/scannet/scannet_infos_val.pkl',  # Ann path of the data
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(
                type='LoadPointsFromFile',
                shift_height=True,
                load_dim=6,
                use_dim=[0, 1, 2]),
            dict(type='PointSample', num_points=40000),
            dict(
                type='DefaultFormatBundle3D',
                class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
                             'door', 'window', 'bookshelf', 'picture',
                             'counter', 'desk', 'curtain', 'refrigerator',
                             'showercurtrain', 'toilet', 'sink', 'bathtub',
                             'garbagebin')),
            dict(type='Collect3D', keys=['points'])
        ],
        classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
                 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
                 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
                 'garbagebin'),  # Names of classes
        test_mode=True),  # Whether to use test mode
    test=dict(  # Test dataset config
        type='ScanNetDataset',  # Type of dataset
        data_root='./data/scannet/',  # Root path of the data
        ann_file='./data/scannet/scannet_infos_val.pkl',  # Ann path of the data
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(
                type='LoadPointsFromFile',
                shift_height=True,
                load_dim=6,
                use_dim=[0, 1, 2]),
            dict(type='PointSample', num_points=40000),
            dict(
                type='DefaultFormatBundle3D',
                class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
                             'door', 'window', 'bookshelf', 'picture',
                             'counter', 'desk', 'curtain', 'refrigerator',
                             'showercurtrain', 'toilet', 'sink', 'bathtub',
                             'garbagebin')),
            dict(type='Collect3D', keys=['points'])
        ],
        classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
                 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
                 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
                 'garbagebin'),  # Names of classes
        test_mode=True))  # Whether to use test mode
evaluation = dict(pipeline=[  # Pipeline is passed by eval_pipeline created before
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='DefaultFormatBundle3D',
        class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                     'window', 'bookshelf', 'picture', 'counter', 'desk',
                     'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                     'sink', 'bathtub', 'garbagebin'),
        with_label=False),
    dict(type='Collect3D', keys=['points'])
])
lr = 0.008  # Learning rate of optimizers
optimizer = dict(  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
    type='Adam',  # Type of optimizers, refer to https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/optimizer/default_constructor.py#L12 for more details
    lr=0.008)  # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
optimizer_config = dict(  # Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/optimizer.py#L22 for implementation details.
    grad_clip=dict(  # Config used to grad_clip
    max_norm=10,  # max norm of the gradients
    norm_type=2))  # Type of the used p-norm. Can be 'inf' for infinity norm.
lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
    policy='step',  # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/lr_updater.py#L9.
    warmup=None,  # The warmup policy, also support `exp` and `constant`.
    step=[24, 32])  # Steps to decay the learning rate
checkpoint_config = dict(  # Config of set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
    interval=1)  # The save interval is 1
log_config = dict(  # config of register logger hook
    interval=50,  # Interval to print the log
    hooks=[dict(type='TextLoggerHook'),
           dict(type='TensorboardLoggerHook')])  # The logger used to record the training process.
runner = dict(type='EpochBasedRunner', max_epochs=36) # Runner that runs the `workflow` in total `max_epochs`
dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO'  # The level of logging.
find_unused_parameters = True  # Whether to find unused parameters
work_dir = None  # Directory to save the model checkpoints and logs for the current experiments.
load_from = None # load models as a pre-trained model from a given path. This will not resume training.
resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved. The training state such as the epoch number and optimizer state will be restored.
workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 36 epochs according to the max_epochs.
gpu_ids = range(0, 1)  # ids of gpus








FAQ


Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs.
You may refer to mmcv [https://mmcv.readthedocs.io/en/latest/utils.html#inherit-from-base-config-with-ignored-fields] for simple illustration.

In MMDetection3D, for example, to change the FPN neck of PointPillars with the following config.

model = dict(
    type='MVXFasterRCNN',
    pts_voxel_layer=dict(...),
    pts_voxel_encoder=dict(...),
    pts_middle_encoder=dict(...),
    pts_backbone=dict(...),
    pts_neck=dict(
        type='FPN',
        norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
        act_cfg=dict(type='ReLU'),
        in_channels=[64, 128, 256],
        out_channels=256,
        start_level=0,
        num_outs=3),
    pts_bbox_head=dict(...))





FPN and SECONDFPN use different keywords to construct.

_base_ = '../_base_/models/hv_pointpillars_fpn_nus.py'
model = dict(
    pts_neck=dict(
        _delete_=True,
        type='SECONDFPN',
        norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    pts_bbox_head=dict(...))





The _delete_=True would replace all old keys in pts_neck field with new keys.




Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets.
It’s worth noting that when modifying intermediate variables in the children configs, user needs to pass the intermediate variables into corresponding fields again.
For example, we would like to use multi scale strategy to train and test a PointPillars. train_pipeline/test_pipeline are intermediate variable we would like modify.

_base_ = './nus-3d.py'
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=[0.95, 1.0, 1.05],
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))





We first define the new train_pipeline/test_pipeline and pass them into data.









            

          

      

      

    

  

    
      
          
            
  
Tutorial 2: Customize Datasets


Support new data format

To support a new data format, you can either convert them to existing formats or directly convert them to the middle format. You could also choose to convert them offline (before training by a script) or online (implement a new dataset and do the conversion at training). In MMDetection3D, for the data that is inconvenient to read directly online, we recommend to convert it into KITTI format and do the conversion offline, thus you only need to modify the config’s data annotation paths and classes after the conversion.
For data sharing similar format with existing datasets, like Lyft compared to nuScenes, we recommend to directly implement data converter and dataset class. During the procedure, inheritation could be taken into consideration to reduce the implementation workload.


Reorganize new data formats to existing format

For data that is inconvenient to read directly online, the simplest way is to convert your dataset to existing dataset formats.

Typically we need a data converter to reorganize the raw data and convert the annotation format into KITTI style. Then a new dataset class inherited from existing ones is sometimes necessary for dealing with some specific differences between datasets. Finally, the users need to further modify the config files to use the dataset. An example [https://mmdetection3d.readthedocs.io/en/latest/2_new_data_model.html] training predefined models on Waymo dataset by converting it into KITTI style can be taken for reference.




Reorganize new data format to middle format

It is also fine if you do not want to convert the annotation format to existing formats.
Actually, we convert all the supported datasets into pickle files, which summarize useful information for model training and inference.

The annotation of a dataset is a list of dict, each dict corresponds to a frame.
A basic example (used in KITTI) is as follows. A frame consists of several keys, like image, point_cloud, calib and annos.
As long as we could directly read data according to these information, the organization of raw data could also be different from existing ones.
With this design, we provide an alternative choice for customizing datasets.


[
    {'image': {'image_idx': 0, 'image_path': 'training/image_2/000000.png', 'image_shape': array([ 370, 1224], dtype=int32)},
     'point_cloud': {'num_features': 4, 'velodyne_path': 'training/velodyne/000000.bin'},
     'calib': {'P0': array([[707.0493,   0.    , 604.0814,   0.    ],
       [  0.    , 707.0493, 180.5066,   0.    ],
       [  0.    ,   0.    ,   1.    ,   0.    ],
       [  0.    ,   0.    ,   0.    ,   1.    ]]),
       'P1': array([[ 707.0493,    0.    ,  604.0814, -379.7842],
       [   0.    ,  707.0493,  180.5066,    0.    ],
       [   0.    ,    0.    ,    1.    ,    0.    ],
       [   0.    ,    0.    ,    0.    ,    1.    ]]),
       'P2': array([[ 7.070493e+02,  0.000000e+00,  6.040814e+02,  4.575831e+01],
       [ 0.000000e+00,  7.070493e+02,  1.805066e+02, -3.454157e-01],
       [ 0.000000e+00,  0.000000e+00,  1.000000e+00,  4.981016e-03],
       [ 0.000000e+00,  0.000000e+00,  0.000000e+00,  1.000000e+00]]),
       'P3': array([[ 7.070493e+02,  0.000000e+00,  6.040814e+02, -3.341081e+02],
       [ 0.000000e+00,  7.070493e+02,  1.805066e+02,  2.330660e+00],
       [ 0.000000e+00,  0.000000e+00,  1.000000e+00,  3.201153e-03],
       [ 0.000000e+00,  0.000000e+00,  0.000000e+00,  1.000000e+00]]),
       'R0_rect': array([[ 0.9999128 ,  0.01009263, -0.00851193,  0.        ],
       [-0.01012729,  0.9999406 , -0.00403767,  0.        ],
       [ 0.00847068,  0.00412352,  0.9999556 ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ]]),
       'Tr_velo_to_cam': array([[ 0.00692796, -0.9999722 , -0.00275783, -0.02457729],
       [-0.00116298,  0.00274984, -0.9999955 , -0.06127237],
       [ 0.9999753 ,  0.00693114, -0.0011439 , -0.3321029 ],
       [ 0.        ,  0.        ,  0.        ,  1.        ]]),
       'Tr_imu_to_velo': array([[ 9.999976e-01,  7.553071e-04, -2.035826e-03, -8.086759e-01],
       [-7.854027e-04,  9.998898e-01, -1.482298e-02,  3.195559e-01],
       [ 2.024406e-03,  1.482454e-02,  9.998881e-01, -7.997231e-01],
       [ 0.000000e+00,  0.000000e+00,  0.000000e+00,  1.000000e+00]])},
     'annos': {'name': array(['Pedestrian'], dtype='<U10'), 'truncated': array([0.]), 'occluded': array([0]), 'alpha': array([-0.2]), 'bbox': array([[712.4 , 143.  , 810.73, 307.92]]), 'dimensions': array([[1.2 , 1.89, 0.48]]), 'location': array([[1.84, 1.47, 8.41]]), 'rotation_y': array([0.01]), 'score': array([0.]), 'index': array([0], dtype=int32), 'group_ids': array([0], dtype=int32), 'difficulty': array([0], dtype=int32), 'num_points_in_gt': array([377], dtype=int32)}}
    ...
]





On top of this you can write a new Dataset class inherited from Custom3DDataset, and overwrite related methods,
like KittiDataset [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/kitti_dataset.py] and ScanNetDataset [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/scannet_dataset.py].




An example of customized dataset

Here we provide an example of customized dataset.

Assume the annotation has been reorganized into a list of dict in pickle files like ScanNet.
The bounding boxes annotations are stored in annotation.pkl as the following

{'point_cloud': {'num_features': 6, 'lidar_idx': 'scene0000_00'}, 'pts_path': 'points/scene0000_00.bin',
 'pts_instance_mask_path': 'instance_mask/scene0000_00.bin', 'pts_semantic_mask_path': 'semantic_mask/scene0000_00.bin',
 'annos': {'gt_num': 27, 'name': array(['window', 'window', 'table', 'counter', 'curtain', 'curtain',
       'desk', 'cabinet', 'sink', 'garbagebin', 'garbagebin',
       'garbagebin', 'sofa', 'refrigerator', 'table', 'table', 'toilet',
       'bed', 'cabinet', 'cabinet', 'cabinet', 'cabinet', 'cabinet',
       'cabinet', 'door', 'door', 'door'], dtype='<U12'),
       'location': array([[ 1.48129511,  3.52074146,  1.85652947],
       [ 2.90395617, -3.48033905,  1.52682471]]),
       'dimensions': array([[1.74445975, 0.23195696, 0.57235193],
       [0.66077662, 0.17072392, 0.67153597]]),
       'gt_boxes_upright_depth': array([
       [ 1.48129511,  3.52074146,  1.85652947,  1.74445975,  0.23195696,
         0.57235193],
       [ 2.90395617, -3.48033905,  1.52682471,  0.66077662,  0.17072392,
         0.67153597]]),
       'index': array([ 0,  1 ], dtype=int32),
       'class': array([ 6,  6 ])}}





We can create a new dataset in mmdet3d/datasets/my_dataset.py to load the data.

import numpy as np
from os import path as osp

from mmdet3d.core import show_result
from mmdet3d.core.bbox import DepthInstance3DBoxes
from mmdet.datasets import DATASETS
from .custom_3d import Custom3DDataset


@DATASETS.register_module()
class MyDataset(Custom3DDataset):
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 modality=None,
                 box_type_3d='Depth',
                 filter_empty_gt=True,
                 test_mode=False):
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)

    def get_ann_info(self, index):
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.int64)
        else:
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
            gt_labels_3d = np.zeros((0, ), dtype=np.int64)

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        pts_instance_mask_path = osp.join(self.data_root,
                                          info['pts_instance_mask_path'])
        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results





Then in the config, to use MyDataset you can modify the config as the following

dataset_A_train = dict(
    type='MyDataset',
    ann_file = 'annotation.pkl',
    pipeline=train_pipeline
)










Customize datasets by dataset wrappers

MMDetection3D also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training like MMDetection.
Currently it supports to three dataset wrappers as below:


	RepeatDataset: simply repeat the whole dataset.


	ClassBalancedDataset: repeat dataset in a class balanced manner.


	ConcatDataset: concat datasets.





Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following

dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )








Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category
frequency. The dataset to repeat needs to instantiate function self.get_cat_ids(idx)
to support ClassBalancedDataset.
For example, to repeat Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
        type='ClassBalancedDataset',
        oversample_thr=1e-3,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )





You may refer to source code [https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/dataset_wrappers.py] for details.




Concatenate dataset

There are three ways to concatenate the dataset.


	If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.

dataset_A_train = dict(
    type='Dataset_A',
    ann_file = ['anno_file_1', 'anno_file_2'],
    pipeline=train_pipeline
)





If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately. To test the concatenated datasets as a whole, you can set separate_eval=False as below.

dataset_A_train = dict(
    type='Dataset_A',
    ann_file = ['anno_file_1', 'anno_file_2'],
    separate_eval=False,
    pipeline=train_pipeline
)







	In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

dataset_A_train = dict()
dataset_B_train = dict()

data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
    )





If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset separately.



	We also support to define ConcatDataset explicitly as the following.

dataset_A_val = dict()
dataset_B_val = dict()

data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dataset_A_train,
    val=dict(
        type='ConcatDataset',
        datasets=[dataset_A_val, dataset_B_val],
        separate_eval=False))





This manner allows users to evaluate all the datasets as a single one by setting separate_eval=False.





Note:


	The option separate_eval=False assumes the datasets use self.data_infos during evaluation. Therefore, COCO datasets do not support this behavior since COCO datasets do not fully rely on self.data_infos for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not suggested.


	Evaluating ClassBalancedDataset and RepeatDataset is not supported thus evaluating concatenated datasets of these types is also not supported.




A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concatenates the repeated datasets is as the following.

dataset_A_train = dict(
    type='RepeatDataset',
    times=N,
    dataset=dict(
        type='Dataset_A',
        ...
        pipeline=train_pipeline
    )
)
dataset_A_val = dict(
    ...
    pipeline=test_pipeline
)
dataset_A_test = dict(
    ...
    pipeline=test_pipeline
)
dataset_B_train = dict(
    type='RepeatDataset',
    times=M,
    dataset=dict(
        type='Dataset_B',
        ...
        pipeline=train_pipeline
    )
)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
)










Modify Dataset Classes

With existing dataset types, we can modify the class names of them to train subset of the annotations.
For example, if you want to train only three classes of the current dataset,
you can modify the classes of dataset.
The dataset will filter out the ground truth boxes of other classes automatically.

classes = ('person', 'bicycle', 'car')
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))





MMDetection V2.0 also supports to read the classes from a file, which is common in real applications.
For example, assume the classes.txt contains the name of classes as the following.

person
bicycle
car





Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.

classes = 'path/to/classes.txt'
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))





Note (related to MMDetection):


	Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filter the empty GT images when filter_empty_gt=True and test_mode=False. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when filter_empty_gt=True and test_mode=False, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves.


	Since the middle format only has box labels and does not contain the class names, when using CustomDataset, users cannot filter out the empty GT images through configs but only do this offline.


	The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in the future (depends on the progress).










            

          

      

      

    

  

    
      
          
            
  
Tutorial 3: Customize Data Pipelines


Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading
with multiple workers. Dataset returns a dict of data items corresponding
the arguments of models’ forward method.
Since the data in object detection may not be the same size (point number, gt bbox size, etc.),
we introduce a new DataContainer type in MMCV to help collect and distribute
data of different size.
See here [https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py] for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
[image: ../_images/data_pipeline.png]

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is an pipeline example for PointPillars.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        pts_scale_ratio=1.0,
        flip=False,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]





For each operation, we list the related dict fields that are added/updated/removed.


Data loading

LoadPointsFromFile


	add: points




LoadPointsFromMultiSweeps


	update: points




LoadAnnotations3D


	add: gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels, pts_instance_mask, pts_semantic_mask, bbox3d_fields, pts_mask_fields, pts_seg_fields







Pre-processing

GlobalRotScaleTrans


	add: pcd_trans, pcd_rotation, pcd_scale_factor


	update: points, *bbox3d_fields




RandomFlip3D


	add: flip, pcd_horizontal_flip, pcd_vertical_flip


	update: points, *bbox3d_fields




PointsRangeFilter


	update: points




ObjectRangeFilter


	update: gt_bboxes_3d, gt_labels_3d




ObjectNameFilter


	update: gt_bboxes_3d, gt_labels_3d




PointShuffle


	update: points




PointsRangeFilter


	update: points







Formatting

DefaultFormatBundle3D


	update: points, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels




Collect3D


	add: img_meta (the keys of img_meta is specified by meta_keys)


	remove: all other keys except for those specified by keys







Test time augmentation

MultiScaleFlipAug


	update: scale, pcd_scale_factor, flip, flip_direction, pcd_horizontal_flip, pcd_vertical_flip with list of augmented data with these specific parameters









Extend and use custom pipelines


	Write a new pipeline in any file, e.g., my_pipeline.py. It takes a dict as input and return a dict.

from mmdet.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform:

    def __call__(self, results):
        results['dummy'] = True
        return results







	Import the new class.

from .my_pipeline import MyTransform







	Use it in config files.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='MyTransform'),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]















            

          

      

      

    

  

    
      
          
            
  
Tutorial 4: Customize Models

We basically categorize model components into 6 types.


	encoder: including voxel layer, voxel encoder and middle encoder used in voxel-based methods before backbone, e.g., HardVFE and PointPillarsScatter.


	backbone: usually an FCN network to extract feature maps, e.g., ResNet, SECOND.


	neck: the component between backbones and heads, e.g., FPN, SECONDFPN.


	head: the component for specific tasks, e.g., bbox prediction and mask prediction.


	RoI extractor: the part for extracting RoI features from feature maps, e.g., H3DRoIHead and PartAggregationROIHead.


	loss: the component in heads for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.





Develop new components


Add a new encoder

Here we show how to develop new components with an example of HardVFE.


1. Define a new voxel encoder (e.g. HardVFE: Voxel feature encoder used in DV-SECOND)

Create a new file mmdet3d/models/voxel_encoders/voxel_encoder.py.

import torch.nn as nn

from ..builder import VOXEL_ENCODERS


@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass








2. Import the module

You can either add the following line to mmdet3d/models/voxel_encoders/__init__.py

from .voxel_encoder import HardVFE





or alternatively add

custom_imports = dict(
    imports=['mmdet3d.models.voxel_encoders.HardVFE'],
    allow_failed_imports=False)





to the config file to avoid modifying the original code.




3. Use the voxel encoder in your config file

model = dict(
    ...
    voxel_encoder=dict(
        type='HardVFE',
        arg1=xxx,
        arg2=xxx),
    ...










Add a new backbone

Here we show how to develop new components with an example of SECOND [https://www.mdpi.com/1424-8220/18/10/3337] (Sparsely Embedded Convolutional Detection).


1. Define a new backbone (e.g. SECOND)

Create a new file mmdet3d/models/backbones/second.py.

import torch.nn as nn

from ..builder import BACKBONES


@BACKBONES.register_module()
class SECOND(BaseModule):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass








2. Import the module

You can either add the following line to mmdet3d/models/backbones/__init__.py

from .second import SECOND





or alternatively add

custom_imports = dict(
    imports=['mmdet3d.models.backbones.second'],
    allow_failed_imports=False)





to the config file to avoid modifying the original code.




3. Use the backbone in your config file

model = dict(
    ...
    backbone=dict(
        type='SECOND',
        arg1=xxx,
        arg2=xxx),
    ...










Add new necks


1. Define a neck (e.g. SECONDFPN)

Create a new file mmdet3d/models/necks/second_fpn.py.

from ..builder import NECKS

@NECKS.register
class SECONDFPN(BaseModule):

    def __init__(self,
                 in_channels=[128, 128, 256],
                 out_channels=[256, 256, 256],
                 upsample_strides=[1, 2, 4],
                 norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
                 upsample_cfg=dict(type='deconv', bias=False),
                 conv_cfg=dict(type='Conv2d', bias=False),
                 use_conv_for_no_stride=False,
                 init_cfg=None):
        pass

    def forward(self, X):
        # implementation is ignored
        pass








2. Import the module

You can either add the following line to mmdet3D/models/necks/__init__.py,

from .second_fpn import SECONDFPN





or alternatively add

custom_imports = dict(
    imports=['mmdet3d.models.necks.second_fpn'],
    allow_failed_imports=False)





to the config file and avoid modifying the original code.




3. Use the neck in your config file

model = dict(
    ...
    neck=dict(
        type='SECONDFPN',
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    ...










Add new heads

Here we show how to develop a new head with the example of PartA2 Head [https://arxiv.org/abs/1907.03670] as the following.

Note: Here the example of PartA2 RoI Head is used in the second stage. For one-stage heads, please refer to examples in mmdet3d/models/dense_heads/. They are more commonly used in 3D detection for autonomous driving due to its simplicity and high efficiency.

First, add a new bbox head in mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py.
PartA2 RoI Head implements a new bbox head for object detection.
To implement a bbox head, basically we need to implement three functions of the new module as the following. Sometimes other related functions like loss and get_targets are also required.

from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead

@HEADS.register_module()
class PartA2BboxHead(BaseModule):
    """PartA2 RoI head."""

    def __init__(self,
                 num_classes,
                 seg_in_channels,
                 part_in_channels,
                 seg_conv_channels=None,
                 part_conv_channels=None,
                 merge_conv_channels=None,
                 down_conv_channels=None,
                 shared_fc_channels=None,
                 cls_channels=None,
                 reg_channels=None,
                 dropout_ratio=0.1,
                 roi_feat_size=14,
                 with_corner_loss=True,
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='none',
                     loss_weight=1.0),
                 init_cfg=None):
        super(PartA2BboxHead, self).__init__(init_cfg=init_cfg)

    def forward(self, seg_feats, part_feats):





Second, implement a new RoI Head if it is necessary. We plan to inherit the new PartAggregationROIHead from Base3DRoIHead. We can find that a Base3DRoIHead already implements the following functions.

from abc import ABCMeta, abstractmethod
from torch import nn as nn


@HEADS.register_module()
class Base3DRoIHead(BaseModule, metaclass=ABCMeta):
    """Base class for 3d RoIHeads."""

    def __init__(self,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):

    @property
    def with_bbox(self):

    @property
    def with_mask(self):

    @abstractmethod
    def init_weights(self, pretrained):

    @abstractmethod
    def init_bbox_head(self):

    @abstractmethod
    def init_mask_head(self):

    @abstractmethod
    def init_assigner_sampler(self):

    @abstractmethod
    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      **kwargs):

    def simple_test(self,
                    x,
                    proposal_list,
                    img_metas,
                    proposals=None,
                    rescale=False,
                    **kwargs):
        """Test without augmentation."""
        pass

    def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs):
        """Test with augmentations.
        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        pass





Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the Base3DRoIHead.
In the mmdet3d/models/roi_heads/part_aggregation_roi_head.py, we implement the new RoI Head as the following:

from torch.nn import functional as F

from mmdet3d.core import AssignResult
from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi
from mmdet.core import build_assigner, build_sampler
from mmdet.models import HEADS
from ..builder import build_head, build_roi_extractor
from .base_3droi_head import Base3DRoIHead


@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
    """Part aggregation roi head for PartA2.
    Args:
        semantic_head (ConfigDict): Config of semantic head.
        num_classes (int): The number of classes.
        seg_roi_extractor (ConfigDict): Config of seg_roi_extractor.
        part_roi_extractor (ConfigDict): Config of part_roi_extractor.
        bbox_head (ConfigDict): Config of bbox_head.
        train_cfg (ConfigDict): Training config.
        test_cfg (ConfigDict): Testing config.
    """

    def __init__(self,
                 semantic_head,
                 num_classes=3,
                 seg_roi_extractor=None,
                 part_roi_extractor=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):
        super(PartAggregationROIHead, self).__init__(
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)
        self.num_classes = num_classes
        assert semantic_head is not None
        self.semantic_head = build_head(semantic_head)

        if seg_roi_extractor is not None:
            self.seg_roi_extractor = build_roi_extractor(seg_roi_extractor)
        if part_roi_extractor is not None:
            self.part_roi_extractor = build_roi_extractor(part_roi_extractor)

        self.init_assigner_sampler()

    def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois):
        """Forward function of roi_extractor and bbox_head used in both
        training and testing.
        Args:
            seg_feats (torch.Tensor): Point-wise semantic features.
            part_feats (torch.Tensor): Point-wise part prediction features.
            voxels_dict (dict): Contains information of voxels.
            rois (Tensor): Roi boxes.
        Returns:
            dict: Contains predictions of bbox_head and
                features of roi_extractor.
        """
        pooled_seg_feats = self.seg_roi_extractor(seg_feats,
                                                  voxels_dict['voxel_centers'],
                                                  voxels_dict['coors'][..., 0],
                                                  rois)
        pooled_part_feats = self.part_roi_extractor(
            part_feats, voxels_dict['voxel_centers'],
            voxels_dict['coors'][..., 0], rois)
        cls_score, bbox_pred = self.bbox_head(pooled_seg_feats,
                                              pooled_part_feats)

        bbox_results = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            pooled_seg_feats=pooled_seg_feats,
            pooled_part_feats=pooled_part_feats)
        return bbox_results





Here we omit more details related to other functions. Please see the code [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/roi_heads/part_aggregation_roi_head.py] for more details.

Last, the users need to add the module in
mmdet3d/models/bbox_heads/__init__.py and mmdet3d/models/roi_heads/__init__.py thus the corresponding registry could find and load them.

Alternatively, the users can add

custom_imports=dict(
    imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_heads.bbox_heads.parta2_bbox_head'])





to the config file and achieve the same goal.

The config file of PartAggregationROIHead is as the following

model = dict(
    ...
    roi_head=dict(
        type='PartAggregationROIHead',
        num_classes=3,
        semantic_head=dict(
            type='PointwiseSemanticHead',
            in_channels=16,
            extra_width=0.2,
            seg_score_thr=0.3,
            num_classes=3,
            loss_seg=dict(
                type='FocalLoss',
                use_sigmoid=True,
                reduction='sum',
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_part=dict(
                type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
        seg_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='max')),
        part_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='avg')),
        bbox_head=dict(
            type='PartA2BboxHead',
            num_classes=3,
            seg_in_channels=16,
            part_in_channels=4,
            seg_conv_channels=[64, 64],
            part_conv_channels=[64, 64],
            merge_conv_channels=[128, 128],
            down_conv_channels=[128, 256],
            bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
            shared_fc_channels=[256, 512, 512, 512],
            cls_channels=[256, 256],
            reg_channels=[256, 256],
            dropout_ratio=0.1,
            roi_feat_size=14,
            with_corner_loss=True,
            loss_bbox=dict(
                type='SmoothL1Loss',
                beta=1.0 / 9.0,
                reduction='sum',
                loss_weight=1.0),
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=True,
                reduction='sum',
                loss_weight=1.0)))
    ...
    )





Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification.
The second stage of PartA2 Head mainly uses a new PartAggregationROIHead and a new
PartA2BboxHead, the arguments are set according to the __init__ function of each module.




Add new loss

Assume you want to add a new loss as MyLoss, for bounding box regression.
To add a new loss function, the users need implement it in mmdet3d/models/losses/my_loss.py.
The decorator weighted_loss enable the loss to be weighted for each element.

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@LOSSES.register_module()
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox





Then the users need to add it in the mmdet3d/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss





Alternatively, you can add

custom_imports=dict(
    imports=['mmdet3d.models.losses.my_loss'])





to the config file and achieve the same goal.

To use it, modify the loss_xxx field.
Since MyLoss is for regression, you need to modify the loss_bbox field in the head.

loss_bbox=dict(type='MyLoss', loss_weight=1.0))













            

          

      

      

    

  

    
      
          
            
  
Tutorial 5: Customize Runtime Settings


Customize optimization settings


Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the optimizer field of config files.
For example, if you want to use ADAM (note that the performance could drop a lot), the modification could be as the following.

optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)





To modify the learning rate of the model, the users only need to modify the lr in the config of optimizer. The users can directly set arguments following the API doc [https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim] of PyTorch.




Customize self-implemented optimizer


1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new directory named mmdet3d/core/optimizer.
And then implement the new optimizer in a file, e.g., in mmdet3d/core/optimizer/my_optimizer.py:

from mmcv.runner.optimizer import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c)








2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two options to achieve it.


	Add mmdet3d/core/optimizer/__init__.py to import it.

The newly defined module should be imported in mmdet3d/core/optimizer/__init__.py so that the registry will
find the new module and add it:





from .my_optimizer import MyOptimizer

__all__ = ['MyOptimizer']





You also need to import optimizer in mmdet3d/core/__init__.py by adding:

from .optimizer import *





Or use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmdet3d.core.optimizer.my_optimizer'], allow_failed_imports=False)





The module mmdet3d.core.optimizer.my_optimizer will be imported at the beginning of the program and the class MyOptimizer is then automatically registered.
Note that only the package containing the class MyOptimizer should be imported.
mmdet3d.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

Actually users can use a totally different file directory structure in this importing method, as long as the module root can be located in PYTHONPATH.




3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files.
In the configs, the optimizers are defined by the field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)





To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)










Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can tune those fine-grained parameters through customizing optimizer constructor.

from mmcv.utils import build_from_cfg

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS, OPTIMIZERS
from mmdet.utils import get_root_logger
from .my_optimizer import MyOptimizer


@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(object):

    def __init__(self, optimizer_cfg, paramwise_cfg=None):

    def __call__(self, model):

        return my_optimizer





The default optimizer constructor is implemented here [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/optimizer/default_constructor.py#L11], which could also serve as a template for new optimizer constructor.




Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training. Feel free to create PR, issue for more settings.


	Use gradient clip to stabilize training:

Some models need gradient clip to clip the gradients to stabilize the training process. An example is as below:

optimizer_config = dict(
    _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))





If your config inherits the base config which already sets the optimizer_config, you might need _delete_=True to override the unnecessary settings in the base config. See the config documentation [https://mmdetection.readthedocs.io/en/latest/tutorials/config.html] for more details.



	Use momentum schedule to accelerate model convergence:

We support momentum scheduler to modify model’s momentum according to learning rate, which could make the model converge in a faster way.
Momentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection to accelerate convergence.
For more details, please refer to the implementation of CyclicLrUpdater [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/lr_updater.py#L358] and CyclicMomentumUpdater [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/momentum_updater.py#L225].

lr_config = dict(
    policy='cyclic',
    target_ratio=(10, 1e-4),
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
    target_ratio=(0.85 / 0.95, 1),
    cyclic_times=1,
    step_ratio_up=0.4,
)














Customize training schedules

By default we use step learning rate with 1x schedule, this calls StepLRHook [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/lr_updater.py#L167] in MMCV.
We support many other learning rate schedule here [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/lr_updater.py], such as CosineAnnealing and Poly schedule. Here are some examples


	Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)







	ConsineAnnealing schedule:

lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=1.0 / 10,
    min_lr_ratio=1e-5)












Customize workflow

Workflow is a list of (phase, epochs) to specify the running order and epochs.
By default it is set to be

workflow = [('train', 1)]





which means running 1 epoch for training.
Sometimes user may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
In such case, we can set the workflow as

[('train', 1), ('val', 1)]





so that 1 epoch for training and 1 epoch for validation will be run iteratively.

Note:


	The parameters of model will not be updated during val epoch.


	Keyword max_epochs in runner in the config only controls the number of training epochs and will not affect the validation workflow.


	Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and [('train', 1)] is that the runner will calculate losses on validation set after each training epoch.







Customize hooks


Customize self-implemented hooks


1. Implement a new hook

There are some occasions when the users might need to implement a new hook. MMDetection supports customized hooks in training (#3395) since v2.3.0. Thus the users could implement a hook directly in mmdet or their mmdet-based codebases and use the hook by only modifying the config in training.
Before v2.3.0, the users need to modify the code to get the hook registered before training starts.
Here we give an example of creating a new hook in mmdet3d and using it in training.

from mmcv.runner import HOOKS, Hook


@HOOKS.register_module()
class MyHook(Hook):

    def __init__(self, a, b):
        pass

    def before_run(self, runner):
        pass

    def after_run(self, runner):
        pass

    def before_epoch(self, runner):
        pass

    def after_epoch(self, runner):
        pass

    def before_iter(self, runner):
        pass

    def after_iter(self, runner):
        pass





Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.




2. Register the new hook

Then we need to make MyHook imported. Assuming the hook is in mmdet3d/core/utils/my_hook.py there are two ways to do that:


	Modify mmdet3d/core/utils/__init__.py to import it.

The newly defined module should be imported in mmdet3d/core/utils/__init__.py so that the registry will
find the new module and add it:





from .my_hook import MyHook

__all__ = [..., 'MyHook']





Or use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmdet3d.core.utils.my_hook'], allow_failed_imports=False)








3. Modify the config

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value)
]





You can also set the priority of the hook by setting key priority to 'NORMAL' or 'HIGHEST' as below

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]





By default the hook’s priority is set as NORMAL during registration.






Use hooks implemented in MMCV

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]








Modify default runtime hooks

There are some common hooks that are not registered through custom_hooks, they are


	log_config


	checkpoint_config


	evaluation


	lr_config


	optimizer_config


	momentum_config




In those hooks, only the logger hook has the VERY_LOW priority, others’ priority are NORMAL.
The above-mentioned tutorials already covers how to modify optimizer_config, momentum_config, and lr_config.
Here we reveal what we can do with log_config, checkpoint_config, and evaluation.


Checkpoint config

The MMCV runner will use checkpoint_config to initialize CheckpointHook [https://github.com/open-mmlab/mmcv/blob/v1.3.7/mmcv/runner/hooks/checkpoint.py#L9].

checkpoint_config = dict(interval=1)





The users could set max_keep_ckpts to save only small number of checkpoints or decide whether to store state dict of optimizer by save_optimizer. More details of the arguments are here [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook].




Log config

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports WandbLoggerHook, MlflowLoggerHook, and TensorboardLoggerHook.
The detailed usages can be found in the docs [https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook].

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])








Evaluation config

The config of evaluation will be used to initialize the EvalHook [https://github.com/open-mmlab/mmdetection/blob/v2.13.0/mmdet/core/evaluation/eval_hooks.py#L9].
Except the key interval, other arguments such as metric will be passed to the dataset.evaluate().

evaluation = dict(interval=1, metric='bbox')















            

          

      

      

    

  

    
      
          
            
  
Tutorial 6: Coordinate System


Overview

MMDetection3D uses three different coordinate systems. The existence of different coordinate systems in the society of 3D object detection is necessary, because for various 3D data collection devices, such as LiDAR, depth camera, etc., the coordinate systems are not consistent, and different 3D datasets also follow different data formats. Early works, such as SECOND, VoteNet, convert the raw data to another format, forming conventions that some later works also follow, making the conversion between coordinate systems even more complicated.

Despite the variety of datasets and equipment, by summarizing the line of works on 3D object detection we can roughly categorize coordinate systems into three:


	Camera coordinate system – the coordinate system of most cameras, in which the positive direction of the y-axis points to the ground, the positive direction of the x-axis points to the right, and the positive direction of the z-axis points to the front.
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	LiDAR coordinate system – the coordinate system of many LiDARs, in which the negative direction of the z-axis points to the ground, the positive direction of the x-axis points to the front, and the positive direction of the y-axis points to the left.
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	Depth coordinate system – the coordinate system used by VoteNet, H3DNet, etc., in which the negative direction of the z-axis points to the ground, the positive direction of the x-axis points to the right, and the positive direction of the y-axis points to the front.
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The definition of coordinate systems in this tutorial is actually more than just defining the three axes. For a box in the form of \((x, y, z, dx, dy, dz, r)\), our coordinate systems also define how to interpret the box dimensions \((dx, dy, dz)\) and the yaw angle \(r\).

The illustration of the three coordinate systems is shown below:

[image: ../_images/coord_sys_all.png]

The three figures above are the 3D coordinate systems while the three figures below are the bird’s eye view.

We will stick to the three coordinate systems defined in this tutorial in the future.




Definition of the yaw angle

Please refer to wikipedia [https://en.wikipedia.org/wiki/Euler_angles#Tait%E2%80%93Bryan_angles] for the standard definition of the yaw angle. In object detection, we choose an axis as the gravity axis, and a reference direction on the plane \(\Pi\) perpendicular to the gravity axis, then the reference direction has a yaw angle of 0, and other directions on \(\Pi\) have non-zero yaw angles depending on its angle with the reference direction.

Currently, for all supported datasets, annotations do not include pitch angle and roll angle, which means we need only consider the yaw angle when predicting boxes and calculating overlap between boxes.

In MMDetection3D, all three coordinate systems are right-handed coordinate systems, which means the ascending direction of the yaw angle is counter-clockwise if viewed from the negative direction of the gravity axis (the axis is pointing at one’s eyes).

The figure below shows that, in this right-handed coordinate system, if we set the positive direction of the x-axis as a reference direction, then the positive direction of the y-axis has a yaw angle of \(\frac{\pi}{2}\).
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For a box, the value of its yaw angle equals its direction minus a reference direction. In all three coordinate systems in MMDetection3D, the reference direction is always the positive direction of the x-axis, while the direction of a box is defined to be parallel with the x-axis if its yaw angle is 0. The definition of the yaw angle of a box is illustrated in the figure below.
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Definition of the box dimensions

The definition of the box dimensions cannot be disentangled with the definition of the yaw angle. In the previous section, we said that the direction of a box is defined to be parallel with the x-axis if its yaw angle is 0. Then naturally, the dimension of a box which corresponds to the x-axis should be \(dx\). However, this is not always the case in some datasets (we will address that later).

The following figures show the meaning of the correspondence between the x-axis and \(dx\), and between the y-axis and \(dy\).
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Note that the box direction is always parallel with the edge \(dx\).
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Relation with raw coordinate systems of supported datasets


KITTI

The raw annotation of KITTI is under camera coordinate system, see get_label_anno [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/tools/data_converter/kitti_data_utils.py]. In MMDetection3D, to train LiDAR-based models on KITTI, the data is first converted from camera coordinate system to LiDAR coordinate system, see get_ann_info [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/datasets/kitti_dataset.py]. For training vision-based models, the data is kept in the camera coordinate system.

In SECOND, the LiDAR coordinate system for a box is defined as follows (a bird’s eye view):

[image: ../_images/kittibox.png]

For each box, the dimensions are \((w, l, h)\), and the reference direction for the yaw angle is the positive direction of the y axis. For more details, refer to the repo [https://github.com/traveller59/second.pytorch#concepts].

Our LiDAR coordinate system has two changes:


	The yaw angle is defined to be right-handed instead of left-handed for consistency;


	The box dimensions are \((l, w, h)\) instead of \((w, l, h)\), since \(w\) corresponds to \(dy\) and \(l\) corresponds to \(dx\) in KITTI.







Waymo

We use the KITTI-format data of Waymo dataset. Therefore, KITTI and Waymo also share the same coordinate system in our implementation.




NuScenes

NuScenes provides a toolkit for evaluation, in which each box is wrapped into a Box instance. The coordinate system of Box is different from our LiDAR coordinate system in that the first two elements of the box dimension correspond to \((dy, dx)\), or \((w, l)\), respectively, instead of the reverse. For more details, please refer to the NuScenes tutorial [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/docs/datasets/nuscenes_det.md#notes].

Readers may refer to the NuScenes development kit [https://github.com/nutonomy/nuscenes-devkit/tree/master/python-sdk/nuscenes/eval/detection] for the definition of a NuScenes box [https://github.com/nutonomy/nuscenes-devkit/blob/2c6a752319f23910d5f55cc995abc547a9e54142/python-sdk/nuscenes/utils/data_classes.py#L457] and implementation of NuScenes evaluation [https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/eval/detection/evaluate.py].




Lyft

Lyft shares the same data format with NuScenes as far as coordinate system is involved.

Please refer to the official website [https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data] for more information.




ScanNet

The raw data of ScanNet is not point cloud but mesh. The sampled point cloud data is under our depth coordinate system. For ScanNet detection task, the box annotations are axis-aligned, and the yaw angle is always zero. Therefore the direction of the yaw angle in our depth coordinate system makes no difference regarding ScanNet.




SUN RGB-D

The raw data of SUN RGB-D is not point cloud but RGB-D image. By back projection, we obtain the corresponding point cloud for each image, which is under our Depth coordinate system. However, the annotation is not under our system and thus needs conversion.

For the conversion from raw annotation to annotation under our Depth coordinate system, please refer to sunrgbd_data_utils.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/tools/data_converter/sunrgbd_data_utils.py].




S3DIS

S3DIS shares the same coordinate system as ScanNet in our implementation. However, S3DIS is a segmentation-task-only dataset, and thus no annotation is coordinate system sensitive.






Examples


Box conversion (between different coordinate systems)

Take the conversion between our Camera coordinate system and LiDAR coordinate system as an example:

First, for points and box centers, the coordinates before and after the conversion satisfy the following relationship:


	\(x_{LiDAR}=z_{camera}\)


	\(y_{LiDAR}=-x_{camera}\)


	\(z_{LiDAR}=-y_{camera}\)




Then, the box dimensions before and after the conversion satisfy the following relationship:


	\(dx_{LiDAR}=dx_{camera}\)


	\(dy_{LiDAR}=dz_{camera}\)


	\(dz_{LiDAR}=dy_{camera}\)




Finally, the yaw angle should also be converted:


	\(r_{LiDAR}=-\frac{\pi}{2}-r_{camera}\)




See the code here [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/core/bbox/structures/box_3d_mode.py] for more details.




Bird’s Eye View

The BEV of a camera coordinate system box is \((x, z, dx, dz, -r)\) if the 3D box is \((x, y, z, dx, dy, dz, r)\). The inversion of the sign of the yaw angle is because the positive direction of the gravity axis of the Camera coordinate system points to the ground.

See the code here [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/core/bbox/structures/cam_box3d.py] for more details.




Rotation of boxes

We set the rotation of all kinds of boxes to be counter-clockwise about the gravity axis. Therefore, to rotate a 3D box we first calculate the new box center, and then we add the rotation angle to the yaw angle.

See the code here [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/core/bbox/structures/cam_box3d.py] for more details.






Common FAQ


Q1: Are the box related ops universal to all coordinate system types?

No. For example, the ops under this folder [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/ops/roiaware_pool3d] are applicable to boxes under Depth or LiDAR coordinate system only. The evaluation functions for KITTI dataset here [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/mmdet3d/core/evaluation/kitti_utils] are only applicable to boxes under Camera coordinate system since the rotation is clockwise if viewed from above.

For each box related op, we have marked the type of boxes to which we can apply the op.




Q2: In every coordinate system, do the three axes point exactly to the right, the front, and the ground, respectively?

No. For example, in KITTI, we need a calibration matrix when converting from Camera coordinate system to LiDAR coordinate system.




Q3: How does a phase difference of \(2\pi\) in the yaw angle of a box affect evaluation?

For IoU calculation, a phase difference of \(2\pi\) in the yaw angle will result in the same box, thus not affecting evaluation.

For angle prediction evaluation such as the NDS metric in NuScenes and the AOS metric in KITTI, the angle of predicted boxes will be first standardized, so the phase difference of \(2\pi\) will not change the result.




Q4: How does a phase difference of \(\pi\) in the yaw angle of a box affect evaluation?

For IoU calculation, a phase difference of \(\pi\) in the yaw angle will result in the same box, thus not affecting evaluation.

However, for angle prediction evaluation, this will result in the exact opposite direction.

Just think about a car. The yaw angle is the angle between the direction of the car front and the positive direction of the x-axis. If we add \(\pi\) to this angle, the car front will become the car rear.

For categories such as barrier, the front and the rear have no difference, therefore a phase difference of \(\pi\) will not affect the angle prediction score.









            

          

      

      

    

  

    
      
          
            
  
Tutorial 7: Backends Support

We support different file client backends: Disk, Ceph and LMDB, etc. Here is an example of how to modify configs for Ceph-based data loading and saving.


Load data and annotations from Ceph

We support loading data and generated annotation info files (pkl and json) from Ceph:

# set file client backends as Ceph
file_client_args = dict(
    backend='petrel',
    path_mapping=dict({
        './data/nuscenes/':
        's3://openmmlab/datasets/detection3d/nuscenes/', # replace the path with your data path on Ceph
        'data/nuscenes/':
        's3://openmmlab/datasets/detection3d/nuscenes/' # replace the path with your data path on Ceph
    }))

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
    sample_groups=dict(Car=15),
    classes=class_names,
    # set file client for points loader to load training data
    points_loader=dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        file_client_args=file_client_args),
    # set file client for data base sampler to load db info file
    file_client_args=file_client_args)

train_pipeline = [
    # set file client for loading training data
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, file_client_args=file_client_args),
    # set file client for loading training data annotations
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, file_client_args=file_client_args),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[0.25, 0.25, 0.25],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.15707963267, 0.15707963267]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    # set file client for loading validation/testing data
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]

data = dict(
    # set file client for loading training info files (.pkl)
    train=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(pipeline=train_pipeline, classes=class_names, file_client_args=file_client_args)),
    # set file client for loading validation info files (.pkl)
    val=dict(pipeline=test_pipeline, classes=class_names,file_client_args=file_client_args),
    # set file client for loading testing info files (.pkl)
    test=dict(pipeline=test_pipeline, classes=class_names, file_client_args=file_client_args))








Load pretrained model from Ceph

model = dict(
    pts_backbone=dict(
        _delete_=True,
        type='NoStemRegNet',
        arch='regnetx_1.6gf',
        init_cfg=dict(
            type='Pretrained', checkpoint='s3://openmmlab/checkpoints/mmdetection3d/regnetx_1.6gf'), # replace the path with your pretrained model path on Ceph
        ...








Load checkpoint from Ceph

# replace the path with your checkpoint path on Ceph
load_from = 's3://openmmlab/checkpoints/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230614-77663cd6.pth.pth'
resume_from = None
workflow = [('train', 1)]








Save checkpoint into Ceph

# checkpoint saving
# replace the path with your checkpoint saving path on Ceph
checkpoint_config = dict(interval=1, max_keep_ckpts=2, out_dir='s3://openmmlab/mmdetection3d')








EvalHook saves the best checkpoint into Ceph

# replace the path with your checkpoint saving path on Ceph
evaluation = dict(interval=1, save_best='bbox', out_dir='s3://openmmlab/mmdetection3d')








Save the training log into Ceph

The training log will be backed up to the specified Ceph path after training.

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook', out_dir='s3://openmmlab/mmdetection3d'),
    ])





You can also delete the local training log after backing up to the specified Ceph path by setting keep_local = False.

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook', out_dir='s3://openmmlab/mmdetection3d'', keep_local=False),
    ])











            

          

      

      

    

  

    
      
          
            
  We provide lots of useful tools under tools/ directory.


Log Analysis

You can plot loss/mAP curves given a training log file. Run pip install seaborn first to install the dependency.

[image: _images/loss_curve.png]loss curve image

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}] [--mode ${MODE}] [--interval ${INTERVAL}]





Notice: If the metric you want to plot is calculated in the eval stage, you need to add the flag --mode eval. If you perform evaluation with an interval of ${INTERVAL}, you need to add the args --interval ${INTERVAL}.

Examples:


	Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls







	Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf







	Compare the bbox mAP of two runs in the same figure.

# evaluate PartA2 and second on KITTI according to Car_3D_moderate_strict
python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/PartA2.log.json tools/logs/second.log.json --keys KITTI/Car_3D_moderate_strict --legend PartA2 second --mode eval --interval 1
# evaluate PointPillars for car and 3 classes on KITTI according to Car_3D_moderate_strict
python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/pp-3class.log.json tools/logs/pp.log.json --keys KITTI/Car_3D_moderate_strict --legend pp-3class pp --mode eval --interval 2









You can also compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]





The output is expected to be like the following.

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter





 




Visualization


Results

To see the prediction results of trained models, you can run the following command

python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --show --show-dir ${SHOW_DIR}





After running this command, plotted results including input data and the output of networks visualized on the input (e.g. ***_points.obj and ***_pred.obj in single-modality 3D detection task) will be saved in ${SHOW_DIR}.

To see the prediction results during evaluation, you can run the following command

python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --eval 'mAP' --eval-options 'show=True' 'out_dir=${SHOW_DIR}'





After running this command, you will obtain the input data, the output of networks and ground-truth labels visualized on the input (e.g. ***_points.obj, ***_pred.obj, ***_gt.obj, ***_img.png and ***_pred.png in multi-modality detection task) in ${SHOW_DIR}. When show is enabled, Open3D [http://www.open3d.org/] will be used to visualize the results online. If you are running test in remote server without GUI, the online visualization is not supported, you can set show=False to only save the output results in {SHOW_DIR}.

As for offline visualization, you will have two options.
To visualize the results with Open3D backend, you can run the following command

python tools/misc/visualize_results.py ${CONFIG_FILE} --result ${RESULTS_PATH} --show-dir ${SHOW_DIR}





[image: _images/open3d_visual.png]

Or you can use 3D visualization software such as the MeshLab [http://www.meshlab.net/] to open these files under ${SHOW_DIR} to see the 3D detection output. Specifically, open ***_points.obj to see the input point cloud and open ***_pred.obj to see the predicted 3D bounding boxes. This allows the inference and results generation to be done in remote server and the users can open them on their host with GUI.

Notice: The visualization API is a little unstable since we plan to refactor these parts together with MMDetection in the future.




Dataset

We also provide scripts to visualize the dataset without inference. You can use tools/misc/browse_dataset.py to show loaded data and ground-truth online and save them on the disk. Currently we support single-modality 3D detection and 3D segmentation on all the datasets, multi-modality 3D detection on KITTI and SUN RGB-D, as well as monocular 3D detection on nuScenes. To browse the KITTI dataset, you can run the following command

python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --output-dir ${OUTPUT_DIR} --online





Notice: Once specifying --output-dir, the images of views specified by users will be saved when pressing _ESC_ in open3d window. If you don’t have a monitor, you can remove the --online flag to only save the visualization results and browse them offline.

To verify the data consistency and the effect of data augmentation, you can also add --aug flag to visualize the data after data augmentation using the command as below:

python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --aug --output-dir ${OUTPUT_DIR} --online





If you also want to show 2D images with 3D bounding boxes projected onto them, you need to find a config that supports multi-modality data loading, and then change the --task args to multi_modality-det. An example is showed below

python tools/misc/browse_dataset.py configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py --task multi_modality-det --output-dir ${OUTPUT_DIR} --online





[image: _images/browse_dataset_multi_modality.png]

You can simply browse different datasets using different configs, e.g. visualizing the ScanNet dataset in 3D semantic segmentation task

python tools/misc/browse_dataset.py configs/_base_/datasets/scannet_seg-3d-20class.py --task seg --output-dir ${OUTPUT_DIR} --online





[image: _images/browse_dataset_seg.png]

And browsing the nuScenes dataset in monocular 3D detection task

python tools/misc/browse_dataset.py configs/_base_/datasets/nus-mono3d.py --task mono-det --output-dir ${OUTPUT_DIR} --online





[image: _images/browse_dataset_mono.png]

 






Model Serving

Note: This tool is still experimental now, only SECOND is supported to be served with TorchServe [https://pytorch.org/serve/]. We’ll support more models in the future.

In order to serve an MMDetection3D model with TorchServe [https://pytorch.org/serve/], you can follow the steps:


1. Convert the model from MMDetection3D to TorchServe

python tools/deployment/mmdet3d2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}





Note: ${MODEL_STORE} needs to be an absolute path to a folder.




2. Build mmdet3d-serve docker image

docker build -t mmdet3d-serve:latest docker/serve/








3. Run mmdet3d-serve

Check the official docs for running TorchServe with docker [https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment].

In order to run it on the GPU, you need to install nvidia-docker [https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html]. You can omit the --gpus argument in order to run on the CPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet3d-serve:latest





Read the docs [https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/] about the Inference (8080), Management (8081) and Metrics (8082) APis




4. Test deployment

You can use test_torchserver.py to compare result of torchserver and pytorch.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}]





Example:

python tools/deployment/test_torchserver.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth second





 






Model Complexity

You can use tools/analysis_tools/get_flops.py in MMDetection3D, a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch], to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]





You will get the results like this.

==============================
Input shape: (40000, 4)
Flops: 5.78 GFLOPs
Params: 953.83 k
==============================





Note: This tool is still experimental and we do not guarantee that the
number is absolutely correct. You may well use the result for simple
comparisons, but double check it before you adopt it in technical reports or papers.


	FLOPs are related to the input shape while parameters are not. The default
input shape is (1, 40000, 4).


	Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.get_model_complexity_info() [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py] for details.


	We currently only support FLOPs calculation of single-stage models with single-modality input (point cloud or image). We will support two-stage and multi-modality models in the future.




 




Model Conversion


RegNet model to MMDetection

tools/model_converters/regnet2mmdet.py convert keys in pycls pretrained RegNet models to
MMDetection style.

python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]








Detectron ResNet to Pytorch

tools/detectron2pytorch.py in MMDetection could convert keys in the original detectron pretrained
ResNet models to PyTorch style.

python tools/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]








Prepare a model for publishing

tools/model_converters/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to


	convert model weights to CPU tensors


	delete the optimizer states and


	compute the hash of the checkpoint file and append the hash id to the
filename.




python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}





E.g.,

python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth





The final output filename will be faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth.

 






Dataset Conversion

tools/data_converter/ contains tools for converting datasets to other formats. Most of them convert datasets to pickle based info files, like kitti, nuscenes and lyft. Waymo converter is used to reorganize waymo raw data like KITTI style. Users could refer to them for our approach to converting data format. It is also convenient to modify them to use as scripts like nuImages converter.

To convert the nuImages dataset into COCO format, please use the command below:

python -u tools/data_converter/nuimage_converter.py --data-root ${DATA_ROOT} --version ${VERSIONS} \
                                                    --out-dir ${OUT_DIR} --nproc ${NUM_WORKERS} --extra-tag ${TAG}






	--data-root: the root of the dataset, defaults to ./data/nuimages.


	--version: the version of the dataset, defaults to v1.0-mini. To get the full dataset, please use --version v1.0-train v1.0-val v1.0-mini


	--out-dir: the output directory of annotations and semantic masks, defaults to ./data/nuimages/annotations/.


	--nproc: number of workers for data preparation, defaults to 4. Larger number could reduce the preparation time as images are processed in parallel.


	--extra-tag: extra tag of the annotations, defaults to nuimages. This can be used to separate different annotations processed in different time for study.




More details could be referred to the doc [https://mmdetection3d.readthedocs.io/en/latest/data_preparation.html] for dataset preparation and README [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/nuimages/README.md/] for nuImages dataset.

 




Miscellaneous


Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its
imports.

python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]











            

          

      

      

    

  

    
      
          
            
  
Benchmarks

Here we benchmark the training and testing speed of models in MMDetection3D,
with some other open source 3D detection codebases.


Settings


	Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz


	Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.


	Model: Since all the other codebases implements different models, we compare the corresponding models including SECOND, PointPillars, Part-A2, and VoteNet with them separately.


	Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of each epoch to skip GPU warmup time.







Main Results

We compare the training speed (samples/s) with other codebases if they implement the similar models. The results are as below, the greater the numbers in the table, the faster of the training process. The models that are not supported by other codebases are marked by ×.




	Methods
	MMDetection3D
	OpenPCDet
	votenet
	Det3D





	VoteNet
	358
	×
	77
	×



	PointPillars-car
	141
	×
	×
	140



	PointPillars-3class
	107
	44
	×
	×



	SECOND
	40
	30
	×
	×



	Part-A2
	17
	14
	×
	×







Details of Comparison


Modification for Calculating Speed


	MMDetection3D: We try to use as similar settings as those of other codebases as possible using benchmark configs [https://github.com/open-mmlab/MMDetection3D/blob/master/configs/benchmark].


	Det3D: For comparison with Det3D, we use the commit 519251e [https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7].


	OpenPCDet: For comparison with OpenPCDet, we use the commit b32fbddb [https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2].

For training speed, we add code to record the running time in the file ./tools/train_utils/train_utils.py. We calculate the speed of each epoch, and report the average speed of all the epochs.

  
  
  (diff to make it use the same method for benchmarking speed - click to expand)
  diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
index 91f21dd..021359d 100644
--- a/tools/train_utils/train_utils.py
+++ b/tools/train_utils/train_utils.py
@@ -2,6 +2,7 @@ import torch
 import os
 import glob
 import tqdm
+import datetime
 from torch.nn.utils import clip_grad_norm_


@@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
     if rank == 0:
         pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)

+    start_time = None
     for cur_it in range(total_it_each_epoch):
+        if cur_it > 49 and start_time is None:
+            start_time = datetime.datetime.now()
         try:
             batch = next(dataloader_iter)
         except StopIteration:
@@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
                 tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
                 for key, val in tb_dict.items():
                     tb_log.add_scalar('train_' + key, val, accumulated_iter)
+    endtime = datetime.datetime.now()
+    speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)
     if rank == 0:
         pbar.close()
-    return accumulated_iter
+    return accumulated_iter, speed


 def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
@@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                 lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
                 merge_all_iters_to_one_epoch=False):
     accumulated_iter = start_iter
+    speeds = []
     with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
         total_it_each_epoch = len(train_loader)
         if merge_all_iters_to_one_epoch:
@@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                 cur_scheduler = lr_warmup_scheduler
             else:
                 cur_scheduler = lr_scheduler
-            accumulated_iter = train_one_epoch(
+            accumulated_iter, speed = train_one_epoch(
                 model, optimizer, train_loader, model_func,
                 lr_scheduler=cur_scheduler,
                 accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
@@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                 total_it_each_epoch=total_it_each_epoch,
                 dataloader_iter=dataloader_iter
             )
-
+            speeds.append(speed)
             # save trained model
             trained_epoch = cur_epoch + 1
             if trained_epoch % ckpt_save_interval == 0 and rank == 0:
@@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                 save_checkpoint(
                     checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
                 )
+            print(speed)
+    print(f'*******{sum(speeds) / len(speeds)}******')


 def model_state_to_cpu(model_state):





  






VoteNet


	MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/votenet/votenet_16x8_sunrgbd-3d-10class.py 8 --no-validate







	votenet: At commit 2f6d6d3 [https://github.com/facebookresearch/votenet/tree/2f6d6d36ff98d96901182e935afe48ccee82d566], run

python train.py --dataset sunrgbd --batch_size 16





Then benchmark the test speed by running

python eval.py --dataset sunrgbd --checkpoint_path log_sunrgbd/checkpoint.tar --batch_size 1 --dump_dir eval_sunrgbd --cluster_sampling seed_fps --use_3d_nms --use_cls_nms --per_class_proposal





Note that eval.py is modified to compute inference time.



(diff to benchmark the similar models - click to expand)
diff --git a/eval.py b/eval.py
  index c0b2886..04921e9 100644
  --- a/eval.py
  +++ b/eval.py
  @@ -10,6 +10,7 @@ import os
   import sys
   import numpy as np
   from datetime import datetime
  +import time
   import argparse
   import importlib
   import torch
  @@ -28,7 +29,7 @@ parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint pa
   parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]')
   parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
   parser.add_argument('--num_target', type=int, default=256, help='Point Number [default: 256]')
  -parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
  +parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 8]')
   parser.add_argument('--vote_factor', type=int, default=1, help='Number of votes generated from each seed [default: 1]')
   parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
   parser.add_argument('--ap_iou_thresholds', default='0.25,0.5', help='A list of AP IoU thresholds [default: 0.25,0.5]')
  @@ -132,6 +133,7 @@ CONFIG_DICT = {'remove_empty_box': (not FLAGS.faster_eval), 'use_3d_nms': FLAGS.
   # ------------------------------------------------------------------------- GLOBAL CONFIG END

   def evaluate_one_epoch():
  +    time_list = list()
       stat_dict = {}
       ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
           for iou_thresh in AP_IOU_THRESHOLDS]
  @@ -144,6 +146,8 @@ def evaluate_one_epoch():

           # Forward pass
           inputs = {'point_clouds': batch_data_label['point_clouds']}
  +        torch.cuda.synchronize()
  +        start_time = time.perf_counter()
           with torch.no_grad():
               end_points = net(inputs)

  @@ -161,6 +165,12 @@ def evaluate_one_epoch():

           batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
           batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
  +        torch.cuda.synchronize()
  +        elapsed = time.perf_counter() - start_time
  +        time_list.append(elapsed)
  +
  +        if len(time_list==200):
  +            print("average inference time: %4f"%(sum(time_list[5:])/len(time_list[5:])))
           for ap_calculator in ap_calculator_list:
               ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
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FAQ

We list some potential troubles encountered by users and developers, along with their corresponding solutions. Feel free to enrich the list if you find any frequent issues and contribute your solutions to solve them. If you have any trouble with environment configuration, model training, etc, please create an issue using the provided templates [https://github.com/open-mmlab/mmdetection3d/blob/master/.github/ISSUE_TEMPLATE/error-report.md/] and fill in all required information in the template.


MMCV/MMDet/MMDet3D Installation


	If you faced the error shown below when importing open3d:

OSError: /lib/x86_64-linux-gnu/libm.so.6: version 'GLIBC_2.27' not found

please downgrade open3d to 0.9.0.0, because the latest open3d needs the support of file ‘GLIBC_2.27’, which only exists in Ubuntu 18.04, not in Ubuntu 16.04.



	If you faced the error when importing pycocotools, this is because nuscenes-devkit installs pycocotools but mmdet relies on mmpycocotools. The current workaround is as below. We will migrate to use pycocotools in the future.

pip uninstall pycocotools mmpycocotools
pip install mmpycocotools





NOTE: We have migrated to use pycocotools in mmdet3d >= 0.13.0.



	If you face the error shown below when importing pycocotools:

ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject

please downgrade pycocotools to 2.0.1 because of the incompatibility between the newest pycocotools and numpy < 1.20.0. Or you can compile and install the latest pycocotools from source as below:

pip install -e "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"

or

pip install -e "git+https://github.com/ppwwyyxx/cocoapi#egg=pycocotools&subdirectory=PythonAPI"








How to annotate point cloud?

MMDetection3D does not support point cloud annotation. Some open-source annotation tool are offered for reference:


	SUSTechPOINTS [https://github.com/naurril/SUSTechPOINTS]


	LATTE [https://github.com/bernwang/latte]




Besides, we improved LATTE [https://github.com/bernwang/latte] for better use. More details can be found here [https://arxiv.org/abs/2011.10174].
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v1.0.0rc1


Operators Migration

We have adopted CUDA operators compiled from mmcv [https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/__init__.py] and removed all the CUDA operators in mmdet3d. We now do not need to compile the CUDA operators in mmdet3d anymore.




Waymo dataset converter refactoring

In this version we did a major code refactoring that boosted the performance of waymo dataset conversion by multiprocessing.
Meanwhile, we also fixed the imprecise timestamps saving issue in waymo dataset conversion. This change introduces following backward compatibility breaks:


	The point cloud .bin files of waymo dataset need to be regenerated.
In the .bin files each point occupies 6 float32 and the meaning of the last float32 now changed from imprecise timestamps to range frame offset.
The range frame offset for each point is calculated asri * h * w + row * w + col if the point is from the TOP lidar or -1 otherwise.
The h, w denote the height and width of the TOP lidar’s range frame.
The ri, row, col denote the return index, the row and the column of the range frame where each point locates.
Following tables show the difference across the change:




Before




	Element offset (float32)
	0
	1
	2
	3
	4
	5





	Bytes offset
	0
	4
	8
	12
	16
	20



	Meaning
	x
	y
	z
	intensity
	elongation
	imprecise timestamp




After




	Element offset (float32)
	0
	1
	2
	3
	4
	5





	Bytes offset
	0
	4
	8
	12
	16
	20



	Meaning
	x
	y
	z
	intensity
	elongation
	range frame offset





	The objects’ point cloud .bin files in the GT-database of waymo dataset need to be regenerated because we also dumped the range frame offset for each point into it.
Following tables show the difference across the change:




Before




	Element offset (float32)
	0
	1
	2
	3
	4





	Bytes offset
	0
	4
	8
	12
	16



	Meaning
	x
	y
	z
	intensity
	elongation




After




	Element offset (float32)
	0
	1
	2
	3
	4
	5





	Bytes offset
	0
	4
	8
	12
	16
	20



	Meaning
	x
	y
	z
	intensity
	elongation
	range frame offset





	Any configuration that uses waymo dataset with GT Augmentation should change the db_sampler.points_loader.load_dim from 5 to 6.









v1.0.0rc0


Coordinate system refactoring

In this version, we did a major code refactoring which improved the consistency among the three coordinate systems (and corresponding box representation), LiDAR, Camera, and Depth. A brief summary for this refactoring is as follows:


	The three coordinate systems are all right-handed now (which means the yaw angle increases in the counterclockwise direction).


	The LiDAR system (x_size, y_size, z_size) corresponds to (l, w, h) instead of (w, l, h). This is more natural since l is parallel with the direction where the yaw angle is zero, and we prefer using the positive direction of the x axis as that direction, which is exactly how we define yaw angle in Depth and Camera coordinate systems.


	The APIs for box-related operations are improved and now are more user-friendly.





NOTICE!!

Since definitions of box representation have changed, the annotation data of most datasets require updating:


	SUN RGB-D: Yaw angles in the annotation should be reversed.


	KITTI: For LiDAR boxes in GT databases, (x_size, y_size, z_size, yaw) out of (x, y, z, x_size, y_size, z_size) should be converted from the old LiDAR coordinate system to the new one. The training/validation data annotations should be left unchanged since they are under the Camera coordinate system, which is unmodified after the refactoring.


	Waymo: Same as KITTI.


	nuScenes: For LiDAR boxes in training/validation data and GT databases, (x_size, y_size, z_size, yaw) out of (x, y, z, x_size, y_size, z_size) should be converted.


	Lyft: Same as nuScenes.




Please regenerate the data annotation/GT database files or use update_data_coords.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/tools/update_data_coords.py] to update the data.

To use boxes under Depth and LiDAR coordinate systems, or to convert boxes between different coordinate systems, users should be aware of the difference between the old and new definitions. For example, the rotation, flipping, and bev functions of DepthInstance3DBoxes [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/depth_box3d.py] and LiDARInstance3DBoxes [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mdet3d/core/bbox/structures/lidar_box3d.py] and box conversion functions [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/box_3d_mode.py] have all been reimplemented in the refactoring.

Consequently, functions like output_to_lyft_box [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/datasets/lyft_dataset.py] undergo small modification to adapt to the new LiDAR/Depth box.

Since the LiDAR system (x_size, y_size, z_size) now corresponds to (l, w, h) instead of (w, l, h), the anchor sizes for LiDAR boxes are also changed, e.g., from [1.6, 3.9, 1.56] to [3.9, 1.6, 1.56].

Functions only involving points are generally unaffected except if they rely on some refactored utility functions such as rotation_3d_in_axis.




Other BC-breaking or new features:


	array_converter: Please refer to array_converter.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/utils/array_converter.py]. Functions wrapped with array_converter can convert array-like input types of torch.Tensor, np.ndarray, and list/tuple/float to torch.Tensor to process in an unified PyTorch pipeline. The result may finally be converted back to the input type. Most functions in utils.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/utils.py] are wrapped with array_converter.


	points_in_boxes [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/base_box3d.py] and points_in_boxes_batch [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/base_box3d.py] will be deprecated soon. They are renamed to points_in_boxes_part and points_in_boxes_all respectively, with more detailed docstrings. The major difference of the two functions is that if a point is enclosed by multiple boxes, points_in_boxes_part will only return the index of the first enclosing box while points_in_boxes_all will return all the indices of enclosing boxes.


	rotation_3d_in_axis: Please refer to utils.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/utils.py]. Now this function supports multiple input types and more options. The function with the same name in box_np_ops.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/box_np_ops.py] is deleted since we do not need another function to tackle with NumPy data. rotation_2d, points_cam2img, and limit_period in box_np_ops.py are also deleted for the same reason.


	bev method of CameraInstance3DBoxes [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/core/bbox/structures/cam_box3d.py]: Changed it to be consistent with the definition of bev in Depth and LiDAR coordinate systems.


	Data augmentation utils in data_augment_utils.py [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/datasets/pipelines/data_augment_utils.py] now follow the rules of a right-handed system.


	We do not need the yaw hacking in KITTI anymore after refining get_direction_target [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/mmdet3d/models/dense_heads/train_mixins.py]. Interested users may refer to PR #677 [https://github.com/open-mmlab/mmdetection3d/pull/677] .











0.16.0


Returned values of QueryAndGroup operation

We modified the returned grouped_xyz value of operation QueryAndGroup to support PAConv segmentor. Originally, the grouped_xyz is centered by subtracting the grouping centers, which represents the relative positions of grouped points. Now, we didn’t perform such subtraction and the returned grouped_xyz stands for the absolute coordinates of these points.

Note that, the other returned variables of QueryAndGroup such as new_features, unique_cnt and grouped_idx are not affected.




NuScenes coco-style data pre-processing

We remove the rotation and dimension hack in the monocular 3D detection on nuScenes. Specifically, we transform the rotation and dimension of boxes defined by nuScenes devkit to the coordinate system of our CameraInstance3DBoxes in the pre-processing and transform them back in the post-processing. In this way, we can remove the corresponding hack [https://github.com/open-mmlab/mmdetection3d/pull/744/files#diff-5bee5062bd84e6fa25a2fdd71353f6f283dfdc4a66a0316c3b1ca26078c978b6L165] used in the visualization tools. The modification also guarantees the correctness of all the operations based on our CameraInstance3DBoxes (such as NMS and flip augmentation) when training monocular 3D detectors.

The modification only influences nuScenes coco-style json files. Please re-run the nuScenes data preparation script if necessary. See more details in the PR #744 [https://github.com/open-mmlab/mmdetection3d/pull/744].




ScanNet dataset for ImVoxelNet

We adopt a new pre-processing procedure for the ScanNet dataset in order to support ImVoxelNet, which is a multi-view method requiring image data. In previous versions of MMDetection3D, ScanNet dataset was only used for point cloud based 3D detection and segmentation methods. We plan adding ImVoxelNet to our model zoo, thus updating ScanNet correspondingly by adding image-related pre-processing steps. Specifically, we made these changes:


	Add script [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/extract_posed_images.py] for extracting RGB data.


	Update script [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/data_converter/scannet_data_utils.py] for annotation creating.


	Add instructions in the documents on preparing image data.




Please refer to the ScanNet README.md [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/] for more details.






0.15.0


MMCV Version

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120 [https://github.com/open-mmlab/mmcv/pull/1120], for related issues, please refer to #5343 [https://github.com/open-mmlab/mmdetection/issues/5343].




Unified parameter initialization

To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call model.init_weights() in the training script to initialize the model (as in here [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py#L183], previously this was handled by the detector. Please refer to PR #622 [https://github.com/open-mmlab/mmdetection3d/pull/622] for details.




BackgroundPointsFilter

We modified the dataset augmentation function BackgroundPointsFilter(here [https://github.com/open-mmlab/mmdetection3d/blob/v0.15.0/mmdet3d/datasets/pipelines/transforms_3d.py#L1132]). In previous version of MMdetection3D, BackgroundPointsFilter changes the gt_bboxes_3d’s bottom center to the gravity center. In MMDetection3D 0.15.0,
BackgroundPointsFilter will not change it. Please refer to PR #609 [https://github.com/open-mmlab/mmdetection3d/pull/609] for details.




Enhance IndoorPatchPointSample transform

We enhance the pipeline function IndoorPatchPointSample used in point cloud segmentation task by adding more choices for patch selection. Also, we plan to remove the unused parameter sample_rate in the future. Please modify the code as well as the config files accordingly if you use this transform.






0.14.0


Dataset class for 3D segmentation task

We remove a useless parameter label_weight from segmentation datasets including Custom3DSegDataset, ScanNetSegDataset and S3DISSegDataset since this weight is utilized in the loss function of model class. Please modify the code as well as the config files accordingly if you use or inherit from these codes.




ScanNet data pre-processing

We adopt new pre-processing and conversion steps of ScanNet dataset. In previous versions of MMDetection3D, ScanNet dataset was only used for 3D detection task, where we trained on the training set and tested on the validation set. In MMDetection3D 0.14.0, we further support 3D segmentation task on ScanNet, which includes online benchmarking on test set. Since the alignment matrix is not provided for test set data, we abandon the alignment of points in data generation steps to support both tasks. Besides, as 3D segmentation requires per-point prediction, we also remove the down-sampling step in data generation.


	In the new ScanNet processing scripts, we save the unaligned points for all the training, validation and test set. For train and val set with annotations, we also store the axis_align_matrix in data infos. For ground-truth bounding boxes, we store boxes in both aligned and unaligned coordinates with key gt_boxes_upright_depth and key unaligned_gt_boxes_upright_depth respectively in data infos.


	In ScanNetDataset, we now load the axis_align_matrix as a part of data annotations. If it is not contained in old data infos, we will use identity matrix for compatibility. We also add a transform function GlobalAlignment in ScanNet detection data pipeline to align the points.


	Since the aligned boxes share the same key as in old data infos, we do not need to modify the code related to it. But do remember that they are not in the same coordinate system as the saved points.


	There is an PointSample pipeline in the data pipelines for ScanNet detection task which down-samples points. So removing down-sampling in data generation will not affect the code.




We have trained a VoteNet [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet/votenet_8x8_scannet-3d-18class.py] model on the newly processed ScanNet dataset and get similar benchmark results. In order to prepare ScanNet data for both detection and segmentation tasks, please re-run the new pre-processing scripts following the ScanNet README.md [https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/].






0.12.0


SUNRGBD dataset for ImVoteNet

We adopt a new pre-processing procedure for the SUNRGBD dataset in order to support ImVoteNet, which is a multi-modality method requiring both image and point cloud data. In previous versions of MMDetection3D, SUNRGBD dataset was only used for point cloud based 3D detection methods. In MMDetection3D 0.12.0, we add ImVoteNet to our model zoo, thus updating SUNRGBD correspondingly by adding image-related pre-processing steps. Specifically, we made these changes:


	Fix a bug in the image file path in meta data.


	Convert calibration matrices from double to float to avoid type mismatch in further operations.


	Add instructions in the documents on preparing image data.




Please refer to the SUNRGBD README.md [https://github.com/open-mmlab/mmdetection3d/blob/master/data/sunrgbd/README.md/] for more details.






0.6.0


VoteNet and H3DNet model structure update

In MMDetection 0.6.0, we updated the model structures of VoteNet and H3DNet, therefore model checkpoints generated by MMDetection < 0.6.0 should be first converted to a format compatible with the latest structures via convert_votenet_checkpoints.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/model_converters/convert_votenet_checkpoints.py] and convert_h3dnet_checkpoints.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/model_converters/convert_h3dnet_checkpoints.py] . For more details, please refer to the VoteNet README.md [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet/README.md/] and H3DNet README.md [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/h3dnet/README.md/].
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mmdet3d.core
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mmdet3d.datasets




mmdet3d.models
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backbones


	
class mmdet3d.models.backbones.DGCNNBackbone(in_channels, num_samples=(20, 20, 20), knn_modes=('D-KNN', 'F-KNN', 'F-KNN'), radius=(None, None, None), gf_channels=((64, 64), (64, 64), (64)), fa_channels=(1024), act_cfg={'type': 'ReLU'}, init_cfg=None)

	Backbone network for DGCNN.


	Parameters

	
	in_channels (int) – Input channels of point cloud.


	num_samples (tuple[int], optional) – The number of samples for knn or
ball query in each graph feature (GF) module.
Defaults to (20, 20, 20).


	knn_modes (tuple[str], optional) – Mode of KNN of each knn module.
Defaults to (‘D-KNN’, ‘F-KNN’, ‘F-KNN’).


	radius (tuple[float], optional) – Sampling radii of each GF module.
Defaults to (None, None, None).


	gf_channels (tuple[tuple[int]], optional) – Out channels of each mlp in
GF module. Defaults to ((64, 64), (64, 64), (64, )).


	fa_channels (tuple[int], optional) – Out channels of each mlp in FA
module. Defaults to (1024, ).


	act_cfg (dict, optional) – Config of activation layer.
Defaults to dict(type=’ReLU’).


	init_cfg (dict, optional) – Initialization config.
Defaults to None.









	
forward(points)

	Forward pass.


	Parameters

	points (torch.Tensor) – point coordinates with features,
with shape (B, N, in_channels).



	Returns

	
	Outputs after graph feature (GF) and
	feature aggregation (FA) modules.


	gf_points (list[torch.Tensor]): Outputs after each GF module.


	fa_points (torch.Tensor): Outputs after FA module.












	Return type

	dict[str, list[torch.Tensor]]














	
class mmdet3d.models.backbones.DLANet(depth, in_channels=3, out_indices=(0, 1, 2, 3, 4, 5), frozen_stages=- 1, norm_cfg=None, conv_cfg=None, layer_with_level_root=(False, True, True, True), with_identity_root=False, pretrained=None, init_cfg=None)

	DLA backbone [https://arxiv.org/abs/1707.06484].


	Parameters

	
	depth (int) – Depth of DLA. Default: 34.


	in_channels (int, optional) – Number of input image channels.
Default: 3.


	norm_cfg (dict, optional) – Dictionary to construct and config
norm layer. Default: None.


	conv_cfg (dict, optional) – Dictionary to construct and config
conv layer. Default: None.


	layer_with_level_root (list[bool], optional) – Whether to apply
level_root in each DLA layer, this is only used for
tree levels. Default: (False, True, True, True).


	with_identity_root (bool, optional) – Whether to add identity
in root layer. Default: False.


	pretrained (str, optional) – model pretrained path.
Default: None.


	init_cfg (dict or list[dict], optional) – Initialization
config dict. Default: None









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class mmdet3d.models.backbones.HRNet(extra, in_channels=3, conv_cfg=None, norm_cfg={'type': 'BN'}, norm_eval=True, with_cp=False, zero_init_residual=False, multiscale_output=True, pretrained=None, init_cfg=None)

	HRNet backbone.

High-Resolution Representations for Labeling Pixels and Regions
arXiv: [https://arxiv.org/abs/1904.04514].


	Parameters

	
	extra (dict) – Detailed configuration for each stage of HRNet.
There must be 4 stages, the configuration for each stage must have
5 keys:



	num_modules(int): The number of HRModule in this stage.


	num_branches(int): The number of branches in the HRModule.


	block(str): The type of convolution block.


	
	num_blocks(tuple): The number of blocks in each branch.
	The length must be equal to num_branches.







	
	num_channels(tuple): The number of channels in each branch.
	The length must be equal to num_branches.















	in_channels (int) – Number of input image channels. Default: 3.


	conv_cfg (dict) – Dictionary to construct and config conv layer.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: True.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: False.


	multiscale_output (bool) – Whether to output multi-level features
produced by multiple branches. If False, only the first level
feature will be output. Default: True.


	pretrained (str, optional) – Model pretrained path. Default: None.


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None.








Example

>>> from mmdet.models import HRNet
>>> import torch
>>> extra = dict(
>>>     stage1=dict(
>>>         num_modules=1,
>>>         num_branches=1,
>>>         block='BOTTLENECK',
>>>         num_blocks=(4, ),
>>>         num_channels=(64, )),
>>>     stage2=dict(
>>>         num_modules=1,
>>>         num_branches=2,
>>>         block='BASIC',
>>>         num_blocks=(4, 4),
>>>         num_channels=(32, 64)),
>>>     stage3=dict(
>>>         num_modules=4,
>>>         num_branches=3,
>>>         block='BASIC',
>>>         num_blocks=(4, 4, 4),
>>>         num_channels=(32, 64, 128)),
>>>     stage4=dict(
>>>         num_modules=3,
>>>         num_branches=4,
>>>         block='BASIC',
>>>         num_blocks=(4, 4, 4, 4),
>>>         num_channels=(32, 64, 128, 256)))
>>> self = HRNet(extra, in_channels=1)
>>> self.eval()
>>> inputs = torch.rand(1, 1, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 32, 8, 8)
(1, 64, 4, 4)
(1, 128, 2, 2)
(1, 256, 1, 1)






	
forward(x)

	Forward function.






	
property norm1

	the normalization layer named “norm1”


	Type

	nn.Module










	
property norm2

	the normalization layer named “norm2”


	Type

	nn.Module










	
train(mode=True)

	Convert the model into training mode will keeping the normalization
layer freezed.










	
class mmdet3d.models.backbones.MultiBackbone(num_streams, backbones, aggregation_mlp_channels=None, conv_cfg={'type': 'Conv1d'}, norm_cfg={'eps': 1e-05, 'momentum': 0.01, 'type': 'BN1d'}, act_cfg={'type': 'ReLU'}, suffixes=('net0', 'net1'), init_cfg=None, pretrained=None, **kwargs)

	MultiBackbone with different configs.


	Parameters

	
	num_streams (int) – The number of backbones.


	backbones (list or dict) – A list of backbone configs.


	aggregation_mlp_channels (list[int]) – Specify the mlp layers
for feature aggregation.


	conv_cfg (dict) – Config dict of convolutional layers.


	norm_cfg (dict) – Config dict of normalization layers.


	act_cfg (dict) – Config dict of activation layers.


	suffixes (list) – A list of suffixes to rename the return dict
for each backbone.









	
forward(points)

	Forward pass.


	Parameters

	points (torch.Tensor) – point coordinates with features,
with shape (B, N, 3 + input_feature_dim).



	Returns

	Outputs from multiple backbones.



	fp_xyz[suffix] (list[torch.Tensor]): The coordinates of
each fp features.


	fp_features[suffix] (list[torch.Tensor]): The features
from each Feature Propagate Layers.


	fp_indices[suffix] (list[torch.Tensor]): Indices of the
input points.


	hd_feature (torch.Tensor): The aggregation feature
from multiple backbones.











	Return type

	dict[str, list[torch.Tensor]]














	
class mmdet3d.models.backbones.NoStemRegNet(arch, init_cfg=None, **kwargs)

	RegNet backbone without Stem for 3D detection.

More details can be found in paper [https://arxiv.org/abs/2003.13678] .


	Parameters

	
	arch (dict) – The parameter of RegNets.
- w0 (int): Initial width.
- wa (float): Slope of width.
- wm (float): Quantization parameter to quantize the width.
- depth (int): Depth of the backbone.
- group_w (int): Width of group.
- bot_mul (float): Bottleneck ratio, i.e. expansion of bottleneck.


	strides (Sequence[int]) – Strides of the first block of each stage.


	base_channels (int) – Base channels after stem layer.


	in_channels (int) – Number of input image channels. Normally 3.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	frozen_stages (int) – Stages to be frozen (all param fixed). -1 means
not freezing any parameters.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity.








Example

>>> from mmdet3d.models import NoStemRegNet
>>> import torch
>>> self = NoStemRegNet(
        arch=dict(
            w0=88,
            wa=26.31,
            wm=2.25,
            group_w=48,
            depth=25,
            bot_mul=1.0))
>>> self.eval()
>>> inputs = torch.rand(1, 64, 16, 16)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 96, 8, 8)
(1, 192, 4, 4)
(1, 432, 2, 2)
(1, 1008, 1, 1)






	
forward(x)

	Forward function of backbone.


	Parameters

	x (torch.Tensor) – Features in shape (N, C, H, W).



	Returns

	Multi-scale features.



	Return type

	tuple[torch.Tensor]














	
class mmdet3d.models.backbones.PointNet2SAMSG(in_channels, num_points=(2048, 1024, 512, 256), radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)), num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)), sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)), ((64, 64, 128), (64, 64, 128), (64, 96, 128)), ((128, 128, 256), (128, 192, 256), (128, 256, 256))), aggregation_channels=(64, 128, 256), fps_mods=('D-FPS', 'FS', ('F-FPS', 'D-FPS')), fps_sample_range_lists=(- 1, - 1, (512, - 1)), dilated_group=(True, True, True), out_indices=(2), norm_cfg={'type': 'BN2d'}, sa_cfg={'normalize_xyz': False, 'pool_mod': 'max', 'type': 'PointSAModuleMSG', 'use_xyz': True}, init_cfg=None)

	PointNet2 with Multi-scale grouping.


	Parameters

	
	in_channels (int) – Input channels of point cloud.


	num_points (tuple[int]) – The number of points which each SA
module samples.


	radii (tuple[float]) – Sampling radii of each SA module.


	num_samples (tuple[int]) – The number of samples for ball
query in each SA module.


	sa_channels (tuple[tuple[int]]) – Out channels of each mlp in SA module.


	aggregation_channels (tuple[int]) – Out channels of aggregation
multi-scale grouping features.


	fps_mods (tuple[int]) – Mod of FPS for each SA module.


	fps_sample_range_lists (tuple[tuple[int]]) – The number of sampling
points which each SA module samples.


	dilated_group (tuple[bool]) – Whether to use dilated ball query for


	out_indices (Sequence[int]) – Output from which stages.


	norm_cfg (dict) – Config of normalization layer.


	sa_cfg (dict) – Config of set abstraction module, which may contain
the following keys and values:


	pool_mod (str): Pool method (‘max’ or ‘avg’) for SA modules.


	use_xyz (bool): Whether to use xyz as a part of features.


	normalize_xyz (bool): Whether to normalize xyz with radii in
each SA module.














	
forward(points)

	Forward pass.


	Parameters

	points (torch.Tensor) – point coordinates with features,
with shape (B, N, 3 + input_feature_dim).



	Returns

	Outputs of the last SA module.



	sa_xyz (torch.Tensor): The coordinates of sa features.


	
	sa_features (torch.Tensor): The features from the
	last Set Aggregation Layers.







	
	sa_indices (torch.Tensor): Indices of the
	input points.
















	Return type

	dict[str, torch.Tensor]














	
class mmdet3d.models.backbones.PointNet2SASSG(in_channels, num_points=(2048, 1024, 512, 256), radius=(0.2, 0.4, 0.8, 1.2), num_samples=(64, 32, 16, 16), sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256), (128, 128, 256)), fp_channels=((256, 256), (256, 256)), norm_cfg={'type': 'BN2d'}, sa_cfg={'normalize_xyz': True, 'pool_mod': 'max', 'type': 'PointSAModule', 'use_xyz': True}, init_cfg=None)

	PointNet2 with Single-scale grouping.


	Parameters

	
	in_channels (int) – Input channels of point cloud.


	num_points (tuple[int]) – The number of points which each SA
module samples.


	radius (tuple[float]) – Sampling radii of each SA module.


	num_samples (tuple[int]) – The number of samples for ball
query in each SA module.


	sa_channels (tuple[tuple[int]]) – Out channels of each mlp in SA module.


	fp_channels (tuple[tuple[int]]) – Out channels of each mlp in FP module.


	norm_cfg (dict) – Config of normalization layer.


	sa_cfg (dict) – Config of set abstraction module, which may contain
the following keys and values:


	pool_mod (str): Pool method (‘max’ or ‘avg’) for SA modules.


	use_xyz (bool): Whether to use xyz as a part of features.


	normalize_xyz (bool): Whether to normalize xyz with radii in
each SA module.














	
forward(points)

	Forward pass.


	Parameters

	points (torch.Tensor) – point coordinates with features,
with shape (B, N, 3 + input_feature_dim).



	Returns

	Outputs after SA and FP modules.



	
	fp_xyz (list[torch.Tensor]): The coordinates of
	each fp features.







	
	fp_features (list[torch.Tensor]): The features
	from each Feature Propagate Layers.







	
	fp_indices (list[torch.Tensor]): Indices of the
	input points.
















	Return type

	dict[str, list[torch.Tensor]]














	
class mmdet3d.models.backbones.ResNeXt(groups=1, base_width=4, **kwargs)

	ResNeXt backbone.


	Parameters

	
	depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.


	in_channels (int) – Number of input image channels. Default: 3.


	num_stages (int) – Resnet stages. Default: 4.


	groups (int) – Group of resnext.


	base_width (int) – Base width of resnext.


	strides (Sequence[int]) – Strides of the first block of each stage.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	frozen_stages (int) – Stages to be frozen (all param fixed). -1 means
not freezing any parameters.


	norm_cfg (dict) – dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – whether to use zero init for last norm layer
in resblocks to let them behave as identity.









	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer










	
class mmdet3d.models.backbones.ResNet(depth, in_channels=3, stem_channels=None, base_channels=64, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=- 1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, with_cp=False, zero_init_residual=True, pretrained=None, init_cfg=None)

	ResNet backbone.


	Parameters

	
	depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.


	stem_channels (int | None) – Number of stem channels. If not specified,
it will be the same as base_channels. Default: None.


	base_channels (int) – Number of base channels of res layer. Default: 64.


	in_channels (int) – Number of input image channels. Default: 3.


	num_stages (int) – Resnet stages. Default: 4.


	strides (Sequence[int]) – Strides of the first block of each stage.


	dilations (Sequence[int]) – Dilation of each stage.


	out_indices (Sequence[int]) – Output from which stages.


	style (str) – pytorch or caffe. If set to “pytorch”, the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.


	deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv


	avg_down (bool) – Use AvgPool instead of stride conv when
downsampling in the bottleneck.


	frozen_stages (int) – Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.


	norm_cfg (dict) – Dictionary to construct and config norm layer.


	norm_eval (bool) – Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.


	plugins (list[dict]) – List of plugins for stages, each dict contains:


	cfg (dict, required): Cfg dict to build plugin.


	position (str, required): Position inside block to insert
plugin, options are ‘after_conv1’, ‘after_conv2’, ‘after_conv3’.


	stages (tuple[bool], optional): Stages to apply plugin, length
should be same as ‘num_stages’.







	with_cp (bool) – Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.


	zero_init_residual (bool) – Whether to use zero init for last norm layer
in resblocks to let them behave as identity.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None








Example

>>> from mmdet.models import ResNet
>>> import torch
>>> self = ResNet(depth=18)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)






	
forward(x)

	Forward function.






	
make_res_layer(**kwargs)

	Pack all blocks in a stage into a ResLayer.






	
make_stage_plugins(plugins, stage_idx)

	Make plugins for ResNet stage_idx th stage.

Currently we support to insert context_block,
empirical_attention_block, nonlocal_block into the backbone
like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of
Bottleneck.

An example of plugins format could be:

Examples

>>> plugins=[
...     dict(cfg=dict(type='xxx', arg1='xxx'),
...          stages=(False, True, True, True),
...          position='after_conv2'),
...     dict(cfg=dict(type='yyy'),
...          stages=(True, True, True, True),
...          position='after_conv3'),
...     dict(cfg=dict(type='zzz', postfix='1'),
...          stages=(True, True, True, True),
...          position='after_conv3'),
...     dict(cfg=dict(type='zzz', postfix='2'),
...          stages=(True, True, True, True),
...          position='after_conv3')
... ]
>>> self = ResNet(depth=18)
>>> stage_plugins = self.make_stage_plugins(plugins, 0)
>>> assert len(stage_plugins) == 3





Suppose stage_idx=0, the structure of blocks in the stage would be:

conv1-> conv2->conv3->yyy->zzz1->zzz2





Suppose ‘stage_idx=1’, the structure of blocks in the stage would be:

conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2





If stages is missing, the plugin would be applied to all stages.


	Parameters

	
	plugins (list[dict]) – List of plugins cfg to build. The postfix is
required if multiple same type plugins are inserted.


	stage_idx (int) – Index of stage to build






	Returns

	Plugins for current stage



	Return type

	list[dict]










	
property norm1

	the normalization layer named “norm1”


	Type

	nn.Module










	
train(mode=True)

	Convert the model into training mode while keep normalization layer
freezed.










	
class mmdet3d.models.backbones.ResNetV1d(**kwargs)

	ResNetV1d variant described in Bag of Tricks [https://arxiv.org/pdf/1812.01187.pdf].

Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
the input stem with three 3x3 convs. And in the downsampling block, a 2x2
avg_pool with stride 2 is added before conv, whose stride is changed to 1.






	
class mmdet3d.models.backbones.SECOND(in_channels=128, out_channels=[128, 128, 256], layer_nums=[3, 5, 5], layer_strides=[2, 2, 2], norm_cfg={'eps': 0.001, 'momentum': 0.01, 'type': 'BN'}, conv_cfg={'bias': False, 'type': 'Conv2d'}, init_cfg=None, pretrained=None)

	Backbone network for SECOND/PointPillars/PartA2/MVXNet.


	Parameters

	
	in_channels (int) – Input channels.


	out_channels (list[int]) – Output channels for multi-scale feature maps.


	layer_nums (list[int]) – Number of layers in each stage.


	layer_strides (list[int]) – Strides of each stage.


	norm_cfg (dict) – Config dict of normalization layers.


	conv_cfg (dict) – Config dict of convolutional layers.









	
forward(x)

	Forward function.


	Parameters

	x (torch.Tensor) – Input with shape (N, C, H, W).



	Returns

	Multi-scale features.



	Return type

	tuple[torch.Tensor]














	
class mmdet3d.models.backbones.SSDVGG(depth, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), pretrained=None, init_cfg=None, input_size=None, l2_norm_scale=None)

	VGG Backbone network for single-shot-detection.


	Parameters

	
	depth (int) – Depth of vgg, from {11, 13, 16, 19}.


	with_last_pool (bool) – Whether to add a pooling layer at the last
of the model


	ceil_mode (bool) – When True, will use ceil instead of floor
to compute the output shape.


	out_indices (Sequence[int]) – Output from which stages.


	out_feature_indices (Sequence[int]) – Output from which feature map.


	pretrained (str, optional) – model pretrained path. Default: None


	init_cfg (dict or list[dict], optional) – Initialization config dict.
Default: None


	input_size (int, optional) – Deprecated argumment.
Width and height of input, from {300, 512}.


	l2_norm_scale (float, optional) – Deprecated argumment.
L2 normalization layer init scale.








Example

>>> self = SSDVGG(input_size=300, depth=11)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 300, 300)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
(1, 1024, 19, 19)
(1, 512, 10, 10)
(1, 256, 5, 5)
(1, 256, 3, 3)
(1, 256, 1, 1)






	
forward(x)

	Forward function.






	
init_weights(pretrained=None)

	Initialize the weights.
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Changelog


v1.0.0rc1 (1/4/2022)


Compatibility


	We migrate all the mmdet3d ops to mmcv and do not need to compile them when installing mmdet3d.


	To fix the imprecise timestamp and optimize its saving method, we reformat the point cloud data during Waymo data conversion. The data conversion time is also optimized significantly by supporting parallel processing. Please re-generate KITTI format Waymo data if necessary. See more details in the compatibility documentation [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/compatibility].


	We update some of the model checkpoints after the refactor of coordinate systems. Please stay tuned for the release of the remaining model checkpoints.







	
	Fully Updated
	Partially Updated
	In Progress
	No Influcence





	SECOND
	
	✓
	
	



	PointPillars
	
	✓
	
	



	FreeAnchor
	✓
	
	
	



	VoteNet
	✓
	
	
	



	H3DNet
	✓
	
	
	



	3DSSD
	
	✓
	
	



	Part-A2
	✓
	
	
	



	MVXNet
	✓
	
	
	



	CenterPoint
	
	
	✓
	



	SSN
	✓
	
	
	



	ImVoteNet
	✓
	
	
	



	FCOS3D
	
	
	
	✓



	PointNet++
	
	
	
	✓



	Group-Free-3D
	
	
	
	✓



	ImVoxelNet
	✓
	
	
	



	PAConv
	
	
	
	✓



	DGCNN
	
	
	
	✓



	SMOKE
	
	
	
	✓



	PGD
	
	
	
	✓



	MonoFlex
	
	
	
	✓







Highlights


	Migrate all the mmdet3d ops to mmcv


	Support parallel waymo data converter


	Add ScanNet instance segmentation dataset with metrics


	Better compatibility for windows with CI support, op migration and bug fixes


	Support loading annotations from Ceph







New Features


	Add ScanNet instance segmentation dataset with metrics (#1230)


	Support different random seeds for different ranks (#1321)


	Support loading annotations from Ceph (#1325)


	Support resuming from the latest checkpoint automatically (#1329)


	Add windows CI (#1345)







Improvements


	Update the table format and OpenMMLab project orders in README.md [https://github.com/open-mmlab/mmdetection3d/blob/master/README] (#1272, #1283)


	Migrate all the mmdet3d ops to mmcv (#1240, #1286, #1290, #1333)


	Add with_plane flag in the KITTI data conversion (#1278)


	Update instructions and links in the documentation (#1300, 1309, #1319)


	Support parallel Waymo dataset converter and ground truth database generator (#1327)


	Add quick installation commands to getting_started.md [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/getting_started] (#1366)







Bug Fixes


	Update nuimages configs to use new nms config style (#1258)


	Fix the usage of np.long for windows compatibility (#1270)


	Fix the incorrect indexing in BasePoints (#1274)


	Fix the incorrect indexing in the pillar_scatter.forward_single [https://github.com/open-mmlab/mmdetection3d/blob/dev/mmdet3d/models/middle_encoders/pillar_scatter.py#L38] (#1280)


	Fix unit tests that use GPUs (#1301)


	Fix incorrect feature dimensions in DynamicPillarFeatureNet caused by previous upgrading of PillarFeatureNet (#1302)


	Remove the CameraPoints constraint in PointSample (#1314)


	Fix imprecise timestamps saving of Waymo dataset (#1327)







Contributors

A total of 9 developers contributed to this release.

@ZCMax, @ZwwWayne, @wHao-Wu, @Tai-Wang, @wangruohui, @zjwzcx, @Xiangxu-0103, @EdAyers, @hongye-dev






v1.0.0rc0 (18/2/2022)


Compatibility


	We refactor our three coordinate systems to make their rotation directions and origins more consistent, and further remove unnecessary hacks in different datasets and models. Therefore, please re-generate data infos or convert the old version to the new one with our provided scripts. We will also provide updated checkpoints in the next version. Please refer to the compatibility documentation [https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0.dev0/docs/en/compatibility] for more details.


	Unify the camera keys for consistent transformation between coordinate systems on different datasets. The modification changes the key names to lidar2img, depth2img, cam2img, etc., for easier understanding. Customized codes using legacy keys may be influenced.


	The next release will begin to move files of CUDA ops to MMCV [https://github.com/open-mmlab/mmcv]. It will influence the way to import related functions. We will not break the compatibility but will raise a warning first and please prepare to migrate it.







Highlights


	Support new monocular 3D detectors: PGD [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd], SMOKE [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/smoke], MonoFlex [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/monoflex]


	Support a new LiDAR-based detector: PointRCNN [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/point_rcnn]


	Support a new backbone: DGCNN [https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/dgcnn]


	Support 3D object detection on the S3DIS dataset


	Support compilation on Windows


	Full benchmark for PAConv on S3DIS


	Further enhancement for documentation, especially on the Chinese documentation







New Features


	Support 3D object detection on the S3DIS dataset (#835)


	Support PointRCNN (#842, #843, #856, #974, #1022, #1109, #1125)


	Support DGCNN (#896)


	Support PGD (#938, #940, #948, #950, #964, #1014, #1065, #1070, #1157)


	Support SMOKE (#939, #955, #959, #975, #988, #999, #1029)


	Support MonoFlex (#1026, #1044, #1114, #1115, #1183)


	Support CPU Training (#1196)







Improvements


	Support point sampling based on distance metric (#667, #840)


	Refactor coordinate systems (#677, #774, #803, #899, #906, #912, #968, #1001)


	Unify camera keys in PointFusion and transformations between different systems (#791, #805)


	Refine documentation (#792, #827, #829, #836, #849, #854, #859, #1111, #1113, #1116, #1121, #1132, #1135, #1185, #1193, #1226)


	Add a script to support benchmark regression (#808)


	Benchmark PAConvCUDA on S3DIS (#847)


	Support to download pdf and epub documentation (#850)


	Change the repeat setting in Group-Free-3D configs to reduce training epochs (#855)


	Support KITTI AP40 evaluation metric (#927)


	Add the mmdet3d2torchserve tool for SECOND (#977)


	Add code-spell pre-commit hook and fix typos (#995)


	Support the latest numba version (#1043)


	Set a default seed to use when the random seed is not specified (#1072)


	Distribute mix-precision models to each algorithm folder (#1074)


	Add abstract and a representative figure for each algorithm (#1086)


	Upgrade pre-commit hook (#1088, #1217)


	Support augmented data and ground truth visualization (#1092)


	Add local yaw property for CameraInstance3DBoxes (#1130)


	Lock the required numba version to 0.53.0 (#1159)


	Support the usage of plane information for KITTI dataset (#1162)


	Deprecate the support for “python setup.py test” (#1164)


	Reduce the number of multi-process threads to accelerate training (#1168)


	Support 3D flip augmentation for semantic segmentation (#1181)


	Update README format for each model (#1195)







Bug Fixes


	Fix compiling errors on Windows (#766)


	Fix the deprecated nms setting in the ImVoteNet config (#828)


	Use the latest wrap_fp16_model import from mmcv (#861)


	Remove 2D annotations generation on Lyft (#867)


	Update index files for the Chinese documentation to be consistent with the English version (#873)


	Fix the nested list transpose in the CenterPoint head (#879)


	Fix deprecated pretrained model loading for RegNet (#889)


	Fix the incorrect dimension indices of rotations and testing config in the CenterPoint test time augmentation (#892)


	Fix and improve visualization tools (#956, #1066, #1073)


	Fix PointPillars FLOPs calculation error (#1075)


	Fix missing dimension information in the SUN RGB-D data generation (#1120)


	Fix incorrect anchor range settings in the PointPillars config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/models/hv_pointpillars_secfpn_kitti.py] for KITTI (#1163)


	Fix incorrect model information in the RegNet metafile (#1184)


	Fix bugs in non-distributed multi-gpu training and testing (#1197)


	Fix a potential assertion error when generating corners from an empty box (#1212)


	Upgrade bazel version according to the requirement of Waymo Devkit (#1223)







Contributors

A total of 12 developers contributed to this release.

@THU17cyz, @wHao-Wu, @wangruohui, @Wuziyi616, @filaPro, @ZwwWayne, @Tai-Wang, @DCNSW, @xieenze, @robin-karlsson0, @ZCMax, @Otteri






v0.18.1 (1/2/2022)


Improvements


	Support Flip3D augmentation in semantic segmentation task (#1182)


	Update regnet metafile (#1184)


	Add point cloud annotation tools introduction in FAQ (#1185)


	Add missing explanations of cam_intrinsic in the nuScenes dataset doc (#1193)







Bug Fixes


	Deprecate the support for “python setup.py test” (#1164)


	Fix the rotation matrix while rotation axis=0 (#1182)


	Fix the bug in non-distributed multi-gpu training/testing (#1197)


	Fix a potential bug when generating corners for empty bounding boxes (#1212)







Contributors

A total of 4 developers contributed to this release.

@ZwwWayne, @ZCMax, @Tai-Wang, @wHao-Wu






v0.18.0 (1/1/2022)


Highlights


	Update the required minimum version of mmdet and mmseg







Improvements


	Use the official markdownlint hook and add codespell hook for pre-committing (#1088)


	Improve CI operation (#1095, #1102, #1103)


	Use shared menu content from OpenMMLab’s theme and remove duplicated contents from config (#1111)


	Refactor the structure of documentation (#1113, #1121)


	Update the required minimum version of mmdet and mmseg (#1147)







Bug Fixes


	Fix symlink failure on Windows (#1096)


	Fix the upper bound of mmcv version in the mminstall requirements (#1104)


	Fix API documentation compilation and mmcv build errors (#1116)


	Fix figure links and pdf documentation compilation (#1132, #1135)







Contributors

A total of 4 developers contributed to this release.

@ZwwWayne, @ZCMax, @Tai-Wang, @wHao-Wu






v0.17.3 (1/12/2021)


Improvements


	Change the default show value to False in show_result function to avoid unnecessary errors (#1034)


	Improve the visualization of detection results with colorized points in single_gpu_test [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/apis/test.py#L11] (#1050)


	Clean unnecessary custom_imports in entrypoints (#1068)







Bug Fixes


	Update mmcv version in the Dockerfile (#1036)


	Fix the memory-leak problem when loading checkpoints in init_model [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/apis/inference.py#L36] (#1045)


	Fix incorrect velocity indexing when formatting boxes on nuScenes (#1049)


	Explicitly set cuda device ID in init_model [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/apis/inference.py#L36] to avoid memory allocation on unexpected devices (#1056)


	Fix PointPillars FLOPs calculation error (#1076)







Contributors

A total of 5 developers contributed to this release.

@wHao-Wu, @Tai-Wang, @ZCMax, @MilkClouds, @aldakata






v0.17.2 (1/11/2021)


Improvements


	Update Group-Free-3D and FCOS3D bibtex (#985)


	Update the solutions for incompatibility of pycocotools in the FAQ (#993)


	Add Chinese documentation for the KITTI (#1003) and Lyft (#1010) dataset tutorial


	Add the H3DNet checkpoint converter for incompatible keys (#1007)







Bug Fixes


	Update mmdetection and mmsegmentation version in the Dockerfile (#992)


	Fix links in the Chinese documentation (#1015)







Contributors

A total of 4 developers contributed to this release.

@Tai-Wang, @wHao-Wu, @ZwwWayne, @ZCMax






v0.17.1 (1/10/2021)


Highlights


	Support a faster but non-deterministic version of hard voxelization


	Completion of dataset tutorials and the Chinese documentation


	Improved the aesthetics of the documentation format







Improvements


	Add Chinese documentation for training on customized datasets and designing customized models (#729, #820)


	Support a faster but non-deterministic version of hard voxelization (#904)


	Update paper titles and code details for metafiles (#917)


	Add a tutorial for KITTI dataset (#953)


	Use Pytorch sphinx theme to improve the format of documentation (#958)


	Use the docker to accelerate CI (#971)







Bug Fixes


	Fix the sphinx version used in the documentation (#902)


	Fix a dynamic scatter bug that discards the first voxel by mistake when all input points are valid (#915)


	Fix the inconsistent variable names used in the unit test [https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_voxel_encoder/test_voxel_generator.py] for voxel generator (#919)


	Upgrade to use build_prior_generator to replace the legacy build_anchor_generator (#941)


	Fix a minor bug caused by a too small difference set in the FreeAnchor Head (#944)







Contributors

A total of 8 developers contributed to this release.

@DCNSW, @zhanggefan, @mickeyouyou, @ZCMax, @wHao-Wu, @tojimahammatov, @xiliu8006, @Tai-Wang






v0.17.0 (1/9/2021)


Compatibility


	Unify the camera keys for consistent transformation between coordinate systems on different datasets. The modification change the key names to lidar2img, depth2img, cam2img, etc. for easier understanding. Customized codes using legacy keys may be influenced.


	The next release will begin to move files of CUDA ops to MMCV [https://github.com/open-mmlab/mmcv]. It will influence the way to import related functions. We will not break the compatibility but will raise a warning first and please prepare to migrate it.







Highlights


	Support 3D object detection on the S3DIS dataset


	Support compilation on Windows


	Full benchmark for PAConv on S3DIS


	Further enhancement for documentation, especially on the Chinese documentation







New Features


	Support 3D object detection on the S3DIS dataset (#835)







Improvements


	Support point sampling based on distance metric (#667, #840)


	Update PointFusion to support unified camera keys (#791)


	Add Chinese documentation for customized dataset (#792), data pipeline (#827), customized runtime (#829), 3D Detection on ScanNet (#836), nuScenes (#854) and Waymo (#859)


	Unify camera keys used in transformation between different systems (#805)


	Add a script to support benchmark regression (#808)


	Benchmark PAConvCUDA on S3DIS (#847)


	Add a tutorial for 3D detection on the Lyft dataset (#849)


	Support to download pdf and epub documentation (#850)


	Change the repeat setting in Group-Free-3D configs to reduce training epochs (#855)







Bug Fixes


	Fix compiling errors on Windows (#766)


	Fix the deprecated nms setting in the ImVoteNet config (#828)


	Use the latest wrap_fp16_model import from mmcv (#861)


	Remove 2D annotations generation on Lyft (#867)


	Update index files for the Chinese documentation to be consistent with the English version (#873)


	Fix the nested list transpose in the CenterPoint head (#879)


	Fix deprecated pretrained model loading for RegNet (#889)







Contributors

A total of 11 developers contributed to this release.

@THU17cyz, @wHao-Wu, @wangruohui, @Wuziyi616, @filaPro, @ZwwWayne, @Tai-Wang, @DCNSW, @xieenze, @robin-karlsson0, @ZCMax






v0.16.0 (1/8/2021)


Compatibility


	Remove the rotation and dimension hack in the monocular 3D detection on nuScenes by applying corresponding transformation in the pre-processing and post-processing. The modification only influences nuScenes coco-style json files. Please re-run the data preparation scripts if necessary. See more details in the PR #744.


	Add a new pre-processing module for the ScanNet dataset in order to support multi-view detectors. Please run the updated scripts to extract the RGB data and its annotations. See more details in the PR #696.







Highlights


	Support to use MIM [https://github.com/open-mmlab/mim] with pip installation


	Support PAConv models and benchmarks [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/paconv] on S3DIS


	Enhance the documentation especially on dataset tutorials







New Features


	Support RGB images on ScanNet for multi-view detectors (#696)


	Support FLOPs and number of parameters calculation (#736)


	Support to use MIM [https://github.com/open-mmlab/mim] with pip installation (#782)


	Support PAConv models and benchmarks on the S3DIS dataset (#783, #809)







Improvements


	Refactor Group-Free-3D to make it inherit BaseModule from MMCV (#704)


	Modify the initialization methods of FCOS3D to be consistent with the refactored approach (#705)


	Benchmark the Group-Free-3D models [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/groupfree3d] on ScanNet (#710)


	Add Chinese documentation for Getting Started (#725), FAQ (#730), Model Zoo (#735), Demo (#745), Quick Run (#746), Data Preparation (#787) and Configs (#788)


	Add documentation for semantic segmentation on ScanNet and S3DIS (#743, #747, #806, #807)


	Add a parameter max_keep_ckpts to limit the maximum number of saved Group-Free-3D checkpoints (#765)


	Add documentation for 3D detection on SUN RGB-D and nuScenes (#770, #793)


	Remove mmpycocotools in the Dockerfile (#785)







Bug Fixes


	Fix versions of OpenMMLab dependencies (#708)


	Convert rt_mat to torch.Tensor in coordinate transformation for compatibility (#709)


	Fix the bev_range initialization in ObjectRangeFilter according to the gt_bboxes_3d type (#717)


	Fix Chinese documentation and incorrect doc format due to the incompatible Sphinx version (#718)


	Fix a potential bug when setting interval == 1 in analyze_logs.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/analysis_tools/analyze_logs.py] (#720)


	Update the structure of Chinese documentation (#722)


	Fix FCOS3D FPN BC-Breaking caused by the code refactoring in MMDetection (#739)


	Fix wrong in_channels when with_distance=True in the Dynamic VFE Layers [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/voxel_encoders/voxel_encoder.py#L87] (#749)


	Fix the dimension and yaw hack of FCOS3D on nuScenes (#744, #794, #795, #818)


	Fix the missing default bbox_mode in the show_multi_modality_result (#825)







Contributors

A total of 12 developers contributed to this release.

@yinchimaoliang, @gopi231091, @filaPro, @ZwwWayne, @ZCMax, @hjin2902, @wHao-Wu, @Wuziyi616, @xiliu8006, @THU17cyz, @DCNSW, @Tai-Wang






v0.15.0 (1/7/2021)


Compatibility

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120 [https://github.com/open-mmlab/mmcv/pull/1120], for related issues, please refer to #5343 [https://github.com/open-mmlab/mmdetection/issues/5343].




Highlights


	Support PAConv [https://arxiv.org/abs/2103.14635]


	Support monocular/multi-view 3D detector ImVoxelNet [https://arxiv.org/abs/2106.01178] on KITTI


	Support Transformer-based 3D detection method Group-Free-3D [https://arxiv.org/abs/2104.00678] on ScanNet


	Add documentation for tasks including LiDAR-based 3D detection, vision-only 3D detection and point-based 3D semantic segmentation


	Add dataset documents like ScanNet







New Features


	Support Group-Free-3D on ScanNet (#539)


	Support PAConv modules (#598, #599)


	Support ImVoxelNet on KITTI (#627, #654)







Improvements


	Add unit tests for pipeline functions LoadImageFromFileMono3D, ObjectNameFilter and ObjectRangeFilter (#615)


	Enhance IndoorPatchPointSample [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py] (#617)


	Refactor model initialization methods based MMCV (#622)


	Add Chinese docs (#629)


	Add documentation for LiDAR-based 3D detection (#642)


	Unify intrinsic and extrinsic matrices for all datasets (#653)


	Add documentation for point-based 3D semantic segmentation (#663)


	Add documentation of ScanNet for 3D detection (#664)


	Refine docs for tutorials (#666)


	Add documentation for vision-only 3D detection (#669)


	Refine docs for Quick Run and Useful Tools (#686)







Bug Fixes


	Fix the bug of BackgroundPointsFilter [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py] using the bottom center of ground truth (#609)


	Fix LoadMultiViewImageFromFiles [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/loading.py] to unravel stacked multi-view images to list to be consistent with DefaultFormatBundle (#611)


	Fix the potential bug in analyze_logs [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/analysis_tools/analyze_logs.py] when the training resumes from a checkpoint or is stopped before evaluation (#634)


	Fix test commands in docs and make some refinements (#635)


	Fix wrong config paths in unit tests (#641)









v0.14.0 (1/6/2021)


Highlights


	Support the point cloud segmentation method PointNet++ [https://arxiv.org/abs/1706.02413]







New Features


	Support PointNet++ (#479, #528, #532, #541)


	Support RandomJitterPoints transform for point cloud segmentation (#584)


	Support RandomDropPointsColor transform for point cloud segmentation (#585)







Improvements


	Move the point alignment of ScanNet from data pre-processing to pipeline (#439, #470)


	Add compatibility document to provide detailed descriptions of BC-breaking changes (#504)


	Add MMSegmentation installation requirement (#535)


	Support points rotation even without bounding box in GlobalRotScaleTrans for point cloud segmentaiton (#540)


	Support visualization of detection results and dataset browse for nuScenes Mono-3D dataset (#542, #582)


	Support faster implementation of KNN (#586)


	Support RegNetX models on Lyft dataset (#589)


	Remove a useless parameter label_weight from segmentation datasets including Custom3DSegDataset, ScanNetSegDataset and S3DISSegDataset (#607)







Bug Fixes


	Fix a corrupted lidar data file in Lyft dataset in data_preparation [https://github.com/open-mmlab/mmdetection3d/tree/master/docs/data_preparation] (#546)


	Fix evaluation bugs in nuScenes and Lyft dataset (#549)


	Fix converting points between coordinates with specific transformation matrix in the coord_3d_mode.py [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/coord_3d_mode.py] (#556)


	Support PointPillars models on Lyft dataset (#578)


	Fix the bug of demo with pre-trained VoteNet model on ScanNet (#600)









v0.13.0 (1/5/2021)


Highlights


	Support a monocular 3D detection method FCOS3D [https://arxiv.org/abs/2104.10956]


	Support ScanNet and S3DIS semantic segmentation dataset


	Enhancement of visualization tools for dataset browsing and demos, including support of visualization for multi-modality data and point cloud segmentation.







New Features


	Support ScanNet semantic segmentation dataset (#390)


	Support monocular 3D detection on nuScenes (#392)


	Support multi-modality visualization (#405)


	Support nuimages visualization (#408)


	Support monocular 3D detection on KITTI (#415)


	Support online visualization of semantic segmentation results (#416)


	Support ScanNet test results submission to online benchmark (#418)


	Support S3DIS data pre-processing and dataset class (#433)


	Support FCOS3D (#436, #442, #482, #484)


	Support dataset browse for multiple types of datasets (#467)


	Adding paper-with-code (PWC) metafile for each model in the model zoo (#485)







Improvements


	Support dataset browsing for SUNRGBD, ScanNet or KITTI points and detection results (#367)


	Add the pipeline to load data using file client (#430)


	Support to customize the type of runner (#437)


	Make pipeline functions process points and masks simultaneously when sampling points (#444)


	Add waymo unit tests (#455)


	Split the visualization of projecting points onto image from that for only points (#480)


	Efficient implementation of PointSegClassMapping (#489)


	Use the new model registry from mmcv (#495)







Bug Fixes


	Fix Pytorch 1.8 Compilation issue in the scatter_points_cuda.cu [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu] (#404)


	Fix dynamic_scatter [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu] errors triggered by empty point input (#417)


	Fix the bug of missing points caused by using break incorrectly in the voxelization (#423)


	Fix the missing coord_type in the waymo dataset config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/waymoD5-3d-3class.py] (#441)


	Fix errors in four unittest functions of configs [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py], test_detectors.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_detectors.py], test_heads.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_heads/test_heads.py] (#453)


	Fix 3DSSD training errors and simplify configs (#462)


	Clamp 3D votes projections to image boundaries in ImVoteNet (#463)


	Update out-of-date names of pipelines in the config [https://github.com/open-mmlab/mmdetection3d/blob/master/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py] of pointpillars benchmark (#474)


	Fix the lack of a placeholder when unpacking RPN targets in the h3d_bbox_head.py [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py] (#508)


	Fix the incorrect value of K when creating pickle files for SUN RGB-D (#511)









v0.12.0 (1/4/2021)


Highlights


	Support a new multi-modality method ImVoteNet [https://arxiv.org/abs/2001.10692].


	Support PyTorch 1.7 and 1.8


	Refactor the structure of tools and train.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py]/test.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py]







New Features


	Support LiDAR-based semantic segmentation metrics (#332)


	Support ImVoteNet [https://arxiv.org/abs/2001.10692] (#352, #384)


	Support the KNN GPU operation (#360, #371)







Improvements


	Add FAQ for common problems in the documentation (#333)


	Refactor the structure of tools (#339)


	Refactor train.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py] and test.py [https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py] (#343)


	Support demo on nuScenes (#353)


	Add 3DSSD checkpoints (#359)


	Update the Bibtex of CenterPoint (#368)


	Add citation format and reference to other OpenMMLab projects in the README (#374)


	Upgrade the mmcv version requirements (#376)


	Add numba and numpy version requirements in FAQ (#379)


	Avoid unnecessary for-loop execution of vfe layer creation (#389)


	Update SUNRGBD dataset documentation to stress the requirements for training ImVoteNet (#391)


	Modify vote head to support 3DSSD (#396)







Bug Fixes


	Fix missing keys coord_type in database sampler config (#345)


	Rename H3DNet configs (#349)


	Fix CI by using ubuntu 18.04 in github workflow (#350)


	Add assertions to avoid 4-dim points being input to points_in_boxes [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py] (#357)


	Fix the SECOND results on Waymo in the corresponding README [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second] (#363)


	Fix the incorrect adopted pipeline when adding val to workflow (#370)


	Fix a potential bug when indices used in the backwarding in ThreeNN (#377)


	Fix a compilation error triggered by scatter_points_cuda.cu [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu] in PyTorch 1.7 (#393)









v0.11.0 (1/3/2021)


Highlights


	Support more friendly visualization interfaces based on open3d


	Support a faster and more memory-efficient implementation of DynamicScatter


	Refactor unit tests and details of configs







New Features


	Support new visualization methods based on open3d (#284, #323)







Improvements


	Refactor unit tests (#303)


	Move the key train_cfg and test_cfg into the model configs (#307)


	Update README [https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/] with Chinese version [https://github.com/open-mmlab/mmdetection3d/blob/master/README_zh-CN.md/] and instructions for getting started [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/]. (#310, #316)


	Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)







Bug Fixes


	Fix an unsupported bias setting in the unit test for centerpoint head (#304)


	Fix errors due to typos in the centerpoint head (#308)


	Fix a minor bug in points_in_boxes.py [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py] when tensors are not in the same device. (#317)


	Fix warning of deprecated usages of nonzero during training with PyTorch 1.6 (#330)









v0.10.0 (1/2/2021)


Highlights


	Preliminary release of API for SemanticKITTI dataset.


	Documentation and demo enhancement for better user experience.


	Fix a number of underlying minor bugs and add some corresponding important unit tests.







New Features


	Support SemanticKITTI dataset preliminarily (#287)







Improvements


	Add tag to README in configurations for specifying different uses (#262)


	Update instructions for evaluation metrics in the documentation (#265)


	Add nuImages entry in README.md [https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/] and gif demo (#266, #268)


	Add unit test for voxelization (#275)







Bug Fixes


	Fixed the issue of unpacking size in furthest_point_sample.py [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/furthest_point_sample/furthest_point_sample.py] (#248)


	Fix bugs for 3DSSD triggered by empty ground truths (#258)


	Remove models without checkpoints in model zoo statistics of documentation (#259)


	Fix some unclear installation instructions in getting_started.md [https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/] (#269)


	Fix relative paths/links in the documentation (#271)


	Fix a minor bug in scatter_points_cuda.cu [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu] when num_features != 4 (#275)


	Fix the bug about missing text files when testing on KITTI (#278)


	Fix issues caused by inplace modification of tensors in BaseInstance3DBoxes (#283)


	Fix log analysis for evaluation and adjust the documentation accordingly (#285)









v0.9.0 (31/12/2020)


Highlights


	Documentation refactoring with better structure, especially about how to implement new models and customized datasets.


	More compatible with refactored point structure by bug fixes in ground truth sampling.







Improvements


	Documentation refactoring (#242)







Bug Fixes


	Fix point structure related bugs in ground truth sampling (#211)


	Fix loading points in ground truth sampling augmentation on nuScenes (#221)


	Fix channel setting in the SeparateHead of CenterPoint (#228)


	Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)


	Remove unreachable lines in nuScenes data converter (#235)


	Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)









v0.8.0 (30/11/2020)


Highlights


	Refactor points structure with more constructive and clearer implementation.


	Support axis-aligned IoU loss for VoteNet with better performance.


	Update and enhance SECOND [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second] benchmark on Waymo.







New Features


	Support axis-aligned IoU loss for VoteNet. (#194)


	Support points structure for consistent processing of all the point related representation. (#196, #204)







Improvements


	Enhance SECOND [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second] benchmark on Waymo with stronger baselines. (#205)


	Add model zoo statistics and polish the documentation. (#201)









v0.7.0 (1/11/2020)


Highlights


	Support a new method SSN [https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700579.pdf] with benchmarks on nuScenes and Lyft datasets.


	Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.


	Support semantic segmentation on nuImages and provide HTC [https://arxiv.org/abs/1901.07518] models with configurations and performance for reference.







New Features


	Modified primitive head which can support the setting on SUN-RGBD dataset (#136)


	Support semantic segmentation and HTC [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages] with models for reference on nuImages dataset (#155)


	Support SSN [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/ssn] on nuScenes and Lyft datasets (#147, #174, #166, #182)


	Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)







Improvements


	Update SECOND [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second] benchmark with configurations for reference on Waymo (#166)


	Delete checkpoints on Waymo to comply its specific license agreement (#180)


	Update models and instructions with mixed precision training [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fp16] on KITTI and nuScenes (#178)







Bug Fixes


	Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)


	Fix the incorrect label mapping on nuImages dataset (#155)









v0.6.1 (11/10/2020)


Highlights


	Support mixed precision training of voxel-based methods


	Support docker with PyTorch 1.6.0


	Update baseline configs and results (CenterPoint [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint] on nuScenes and PointPillars [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars] on Waymo with full dataset)


	Switch model zoo to download.openmmlab.com







New Features


	Support dataset pipeline VoxelBasedPointSampler to sample multi-sweep points based on voxelization. (#125)


	Support mixed precision training of voxel-based methods (#132)


	Support docker with PyTorch 1.6.0 (#160)







Improvements


	Reduce requirements for the case exclusive of Waymo (#121)


	Switch model zoo to download.openmmlab.com (#126)


	Update docs related to Waymo (#128)


	Add version assertion in the init file [https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/__init__.py] (#129)


	Add evaluation interval setting for CenterPoint (#131)


	Add unit test for CenterPoint (#133)


	Update PointPillars [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars] baselines on Waymo with full dataset (#142)


	Update CenterPoint [https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint] results with models and logs (#154)







Bug Fixes


	Fix a bug of visualization in multi-batch case (#120)


	Fix bugs in dcn unit test (#130)


	Fix dcn bias bug in centerpoint (#137)


	Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)


	Fix origin initialization in CameraInstance3DBoxes (#148, #150)


	Correct documentation link in the getting_started.md (#159)


	Fix model save path bug in gather_models.py (#153)


	Fix image padding shape bug in PointFusion (#162)









v0.6.0 (20/9/2020)


Highlights


	Support new methods H3DNet [https://arxiv.org/abs/2006.05682], 3DSSD [https://arxiv.org/abs/2002.10187], CenterPoint [https://arxiv.org/abs/2006.11275].


	Support new dataset Waymo [https://waymo.com/open/] (with PointPillars baselines) and nuImages [https://www.nuscenes.org/nuimages] (with Mask R-CNN and Cascade Mask R-CNN baselines).


	Support Batch Inference


	Support Pytorch 1.6


	Start to publish mmdet3d package to PyPI since v0.5.0. You can use mmdet3d through pip install mmdet3d.







Backwards Incompatible Changes


	Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.


	Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use collect_env function in MMCV.
get_compiler_version and get_compiling_cuda_version compiled in mmdet3d.ops.utils are removed. Please import these two functions from mmcv.ops.







New Features


	Support nuImages [https://www.nuscenes.org/nuimages] dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)


	Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)


	Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)


	Support H3DNet [https://arxiv.org/abs/2006.05682] and release models on ScanNet dataset (#53, #58, #105)


	Support Fusion Point Sampling used in 3DSSD [https://arxiv.org/abs/2002.10187] (#66)


	Add BackgroundPointsFilter to filter background points in data pipeline (#84)


	Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)


	Support dilated ball query used in 3DSSD [https://arxiv.org/abs/2002.10187] (#96)


	Support 3DSSD [https://arxiv.org/abs/2002.10187] and release models on KITTI dataset (#83, #100, #104)


	Support CenterPoint [https://arxiv.org/abs/2006.11275] and release models on nuScenes dataset (#49, #92)


	Support Waymo [https://waymo.com/open/] dataset and release PointPillars baseline models (#118)


	Allow LoadPointsFromMultiSweeps to pad empty sweeps and select multiple sweeps randomly (#67)







Improvements


	Fix all warnings and bugs in PyTorch 1.6.0 (#70, #72)


	Update issue templates (#43)


	Update unit tests (#20, #24, #30)


	Update documentation for using ply format point cloud data (#41)


	Use points loader to load point cloud data in ground truth (GT) samplers (#87)


	Unify version file of OpenMMLab projects by using version.py (#112)


	Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)







Bug Fixes


	Rename CosineAnealing to CosineAnnealing (#57)


	Fix device inconsistent bug in 3D IoU computation (#69)


	Fix a minor bug in json2csv of lyft dataset (#78)


	Add missed test data for pointnet modules (#85)


	Fix use_valid_flag bug in CustomDataset (#106)









v0.5.0 (9/7/2020)

MMDetection3D is released.







            

          

      

      

    

  

  
    
    
    <no title>
    

    

    

    
 
  

    
      
          
            
  

	KITTI Dataset for 3D Object Detection
	Prepare dataset

	Train pipeline

	Evaluation

	Metrics

	Testing and make a submission





	NuScenes Dataset for 3D Object Detection
	Before Preparation

	Dataset Preparation

	Training pipeline

	Evaluation

	Metrics

	Testing and make a submission

	Notes





	Lyft Dataset for 3D Object Detection
	Before Preparation

	Dataset Preparation

	Training pipeline

	Evaluation

	Metrics

	Testing and make a submission





	Waymo Dataset
	Prepare dataset

	Training

	Evaluation

	Testing and make a submission





	SUN RGB-D for 3D Object Detection
	Dataset preparation

	Train pipeline

	Metrics





	ScanNet for 3D Object Detection
	Dataset preparation

	Training pipeline

	Metrics





	ScanNet for 3D Semantic Segmentation
	Dataset preparation

	Training pipeline

	Metrics

	Testing and Making a Submission





	S3DIS for 3D Semantic Segmentation
	Dataset preparation

	Training pipeline

	Metrics











            

          

      

      

    

  

  
    
    
    <no title>
    

    

    

    
 
  

    
      
          
            
  

	LiDAR-Based 3D Detection
	Data Preparation

	Training

	Quantitative Evaluation

	Testing and Making a Submission

	Qualitative Validation





	Vision-Based 3D Detection
	Data Preparation

	Training

	Quantitative Evaluation

	Testing and Making a Submission

	Qualitative Validation





	LiDAR-Based 3D Semantic Segmentation
	Data Preparation

	Training

	Quantitative Evaluation

	Testing and Making a Submission

	Qualitative Validation











            

          

      

      

    

  

  
    
    
    <no title>
    

    

    

    
 
  

    
      
          
            
  

	Tutorial 1: Learn about Configs
	Config File Structure

	Config Name Style

	Deprecated train_cfg/test_cfg

	An example of VoteNet

	FAQ





	Tutorial 2: Customize Datasets
	Support new data format

	Customize datasets by dataset wrappers

	Modify Dataset Classes





	Tutorial 3: Customize Data Pipelines
	Design of Data pipelines

	Extend and use custom pipelines





	Tutorial 4: Customize Models
	Develop new components





	Tutorial 5: Customize Runtime Settings
	Customize optimization settings

	Customize training schedules

	Customize workflow

	Customize hooks





	Tutorial 6: Coordinate System
	Overview

	Definition of the yaw angle

	Definition of the box dimensions

	Relation with raw coordinate systems of supported datasets

	Examples

	Common FAQ





	Tutorial 7: Backends Support
	Load data and annotations from Ceph

	Load pretrained model from Ceph

	Load checkpoint from Ceph

	Save checkpoint into Ceph

	EvalHook saves the best checkpoint into Ceph

	Save the training log into Ceph











            

          

      

      

    

  
_images/browse_dataset_mono.png





_images/browse_dataset_multi_modality.png





_images/browse_dataset_seg.png





_images/coord_sys_all.png
Depth LiDAR Camera

+z (front)

+x (front)

+x (right)






_images/data_pipeline.png
LoadPointsFromFile

LoadPointsFrom

LoadAnnotations

GlobalRotScaleTrans

DefaultFormat

MultiSweeps RandomFlip3D PointsRangeFilter ObjectRangeFilter ObjectNameFilter PointShuffle PointsRangeFilter Bundle3D Collect3D
{ { { { { { { { {
“points™ “points”: “points”: “points™: “points™: “points”: “points”: “points”: “points”: “points”: “points”: “points”:
} } “gt_bboxes_3d™ “gt_bboxes_3d™ “gt_bboxes_3d”™: “gt_bboxes_3d™: “gt_bboxes_3d™ “gt_bboxes_3d™ “gt_bboxes_3d™ “gt_bboxes_3d": “gt_bboxes_3d™ “img_meta”: {
“gt_labels_3d™ “gt_labels_3d™ “gt_labels_3d™ “gt_labels_3d" “gt_labels_3d" “gt_labels_3d" “gt_labels_3d™ “gt_labels_3d™ “gt_labels_3d™ “pcd_trans”:
“gt_bboxes”™ “gt_bboxes™ “gt_bboxes™: “gt_bboxes™: “gt_bboxes™ “pts_instance_mask”: “gt_bboxes™ “gt_bboxes™ “gt_bboxes™ “pcd_rotation”:
“gt_labels™ “gt_labels™ “gt_labels™ “gt_labels™ “gt_labels”™ “pts_semantic_mask”: “gt_labels™ “gt_labels™ “gt_labels™: “pcd_scale_factor™

“pts_instance_mask”™:

“pts_semantic_mask™:

“bbox3d_fields™
“pts_mask_fields”:
“pts_seg_fields™

“pts_instance_mask”:

“pts_semantic_mask”:

“bbox3d_fields”:
“pts_mask_fields”:
“pts_seg_fields™
“pcd_trans™
“pcd_rotation™
“pcd_scale_factor”™

“pts_instance_mask”:
“pts_semantic_mask”:
“bbox3d_fields™:
“pts_mask_fields”:
“pts_seg_fields™
“pcd_trans”™
“pcd_rotation”:
“pcd_scale_factor”:
“flip™:
“pcd_horizontal_flip”™:
“pcd_vertical_flip”™:

“pts_instance_mask”™:

“pts_semantic_mask”:

“bbox3d_fields”:
“pts_mask_fields”:
“pts_seg_fields™
“pcd_trans™
“pcd_rotation”:
“pcd_scale_factor”™:
“flip”:
“pcd_horizontal_flip”™:
“pcd_vertical_flip”™:

“pts_instance_mask”:
“pts_semantic_mask”:
“bbox3d_fields”:
“pts_mask_fields”™:
“pts_seg_fields™
“pcd_trans™:
“pcd_rotation”:
“pcd_scale_factor”™:
“flip™:
“pcd_horizontal_flip”:
“pcd_vertical_flip™:

“bbox3d_fields”:
“pts_mask_fields”™:
“pts_seg_fields™
“pcd_trans™
“pcd_rotation”:
“pcd_scale_factor”:
“flip”:
“pcd_horizontal_flip”™:
“pcd_vertical_flip™:

“pts_instance_mask”:
“pts_semantic_mask”:
“bbox3d_fields”:
“pts_mask_fields”™:
“pts_seg_fields™
“pcd_trans™
“pcd_rotation”:
“pcd_scale_factor”™:
“flip™:
“pcd_horizontal_flip”:
“pcd_vertical_flip™:

“pts_instance_mask”:
“pts_semantic_mask”:
“bbox3d_fields”:
“pts_mask_fields”:
“pts_seg_fields™
“pcd_trans™:
“pcd_rotation™:
“pcd_scale_factor”™:
“flip™:
“pcd_horizontal_flip”:
“pcd_vertical_flip™:

“pts_instance_mask”™:

“pts_semantic_mask”:

“bbox3d_fields”:
“pts_mask_fields”™:
“pts_seg_fields™
“pcd_trans™
“pcd_rotation”:
“pcd_scale_factor”:
“flip”:
“pcd_horizontal_flip”™:
“pcd_vertical_flip™:

}

“flip”
“pcd_horizontal_flip”™:
“pcd_vertical_flip”:

}

“gt_bboxes_3d":

“gt_labels_3d™






nav.xhtml

    
      Table of Contents


      
        		
          Welcome to MMDetection3D’s documentation!
        


        		
          Prerequisites
        


        		
          Installation
          
            		
              Install MMDetection3D
              
                		
                  Quick installation instructions script
                


                		
                  Step-by-step installation instructions
                


              


            


            		
              Another option: Docker Image
            


            		
              A from-scratch setup script
            


            		
              Using multiple MMDetection3D versions
            


          


        


        		
          Verification
          
            		
              Verify with point cloud demo
            


            		
              High-level APIs for testing point clouds
              
                		
                  Synchronous interface
                


              


            


          


        


        		
          Demo
          
            		
              Introduction
            


            		
              Testing
              
                		
                  3D Detection
                


                		
                  Monocular 3D Detection
                


                		
                  3D Segmentation
                


              


            


          


        


        		
          Model Zoo
          
            		
              Common settings
            


            		
              Baselines
              
                		
                  SECOND
                


                		
                  PointPillars
                


                		
                  Part-A2
                


                		
                  VoteNet
                


                		
                  Dynamic Voxelization
                


                		
                  MVXNet
                


                		
                  RegNetX
                


                		
                  nuImages
                


                		
                  H3DNet
                


                		
                  3DSSD
                


                		
                  CenterPoint
                


                		
                  SSN
                


                		
                  ImVoteNet
                


                		
                  FCOS3D
                


                		
                  PointNet++
                


                		
                  Group-Free-3D
                


                		
                  ImVoxelNet
                


                		
                  PAConv
                


                		
                  DGCNN
                


                		
                  SMOKE
                


                		
                  PGD
                


                		
                  PointRCNN
                


                		
                  MonoFlex
                


                		
                  Mixed Precision (FP16) Training
                


              


            


          


        


        		
          Dataset Preparation
          
            		
              Before Preparation
            


            		
              Download and Data Preparation
              
                		
                  KITTI
                


                		
                  Waymo
                


                		
                  NuScenes
                


                		
                  Lyft
                


                		
                  S3DIS, ScanNet and SUN RGB-D
                


                		
                  Customized Datasets
                


              


            


          


        


        		
          1: Inference and train with existing models and standard datasets
          
            		
              Inference with existing models
              
                		
                  Test existing models on standard datasets
                


              


            


            		
              Train predefined models on standard datasets
              
                		
                  Train with a single GPU
                


                		
                  Training with CPU (experimental)
                


                		
                  Train with multiple GPUs
                


                		
                  Train with multiple machines
                


                		
                  Launch multiple jobs on a single machine
                


              


            


          


        


        		
          2: Train with customized datasets
          
            		
              Prepare the customized dataset
              
                		
                  KITTI dataset format
                


              


            


            		
              Prepare a config
            


            		
              Train a new model
            


            		
              Test and inference
            


          


        


        		
          LiDAR-Based 3D Detection
          
            		
              Data Preparation
            


            		
              Training
            


            		
              Quantitative Evaluation
            


            		
              Testing and Making a Submission
            


            		
              Qualitative Validation
            


          


        


        		
          Vision-Based 3D Detection
          
            		
              Data Preparation
            


            		
              Training
            


            		
              Quantitative Evaluation
            


            		
              Testing and Making a Submission
            


            		
              Qualitative Validation
            


          


        


        		
          LiDAR-Based 3D Semantic Segmentation
          
            		
              Data Preparation
            


            		
              Training
            


            		
              Quantitative Evaluation
            


            		
              Testing and Making a Submission
            


            		
              Qualitative Validation
            


          


        


        		
          KITTI Dataset for 3D Object Detection
          
            		
              Prepare dataset
              
                		
                  Create KITTI dataset
                


              


            


            		
              Train pipeline
            


            		
              Evaluation
            


            		
              Metrics
            


            		
              Testing and make a submission
            


          


        


        		
          NuScenes Dataset for 3D Object Detection
          
            		
              Before Preparation
            


            		
              Dataset Preparation
            


            		
              Training pipeline
              
                		
                  LiDAR-Based Methods
                


                		
                  Vision-Based Methods
                


              


            


            		
              Evaluation
            


            		
              Metrics
            


            		
              Testing and make a submission
            


            		
              Notes
              
                		
                  Transformation between NuScenesBox and our CameraInstanceBoxes.
                


              


            


          


        


        		
          Lyft Dataset for 3D Object Detection
          
            		
              Before Preparation
            


            		
              Dataset Preparation
            


            		
              Training pipeline
              
                		
                  LiDAR-Based Methods
                


              


            


            		
              Evaluation
            


            		
              Metrics
            


            		
              Testing and make a submission
            


          


        


        		
          Waymo Dataset
          
            		
              Prepare dataset
            


            		
              Training
            


            		
              Evaluation
            


            		
              Testing and make a submission
            


          


        


        		
          SUN RGB-D for 3D Object Detection
          
            		
              Dataset preparation
              
                		
                  Download SUN RGB-D data and toolbox
                


                		
                  Extract data and annotations for 3D detection from raw data
                


                		
                  Create dataset
                


              


            


            		
              Train pipeline
            


            		
              Metrics
            


          


        


        		
          ScanNet for 3D Object Detection
          
            		
              Dataset preparation
              
                		
                  Export ScanNet point cloud data
                


                		
                  Export ScanNet RGB data (optional)
                


                		
                  Create dataset
                


              


            


            		
              Training pipeline
            


            		
              Metrics
            


          


        


        		
          ScanNet for 3D Semantic Segmentation
          
            		
              Dataset preparation
              
                		
                  Export ScanNet data
                


                		
                  Create dataset
                


              


            


            		
              Training pipeline
            


            		
              Metrics
            


            		
              Testing and Making a Submission
            


          


        


        		
          S3DIS for 3D Semantic Segmentation
          
            		
              Dataset preparation
              
                		
                  Export S3DIS data
                


                		
                  Create dataset
                


              


            


            		
              Training pipeline
            


            		
              Metrics
            


          


        


        		
          Tutorial 1: Learn about Configs
          
            		
              Config File Structure
            


            		
              Config Name Style
            


            		
              Deprecated train_cfg/test_cfg
            


            		
              An example of VoteNet
            


            		
              FAQ
              
                		
                  Ignore some fields in the base configs
                


                		
                  Use intermediate variables in configs
                


              


            


          


        


        		
          Tutorial 2: Customize Datasets
          
            		
              Support new data format
              
                		
                  Reorganize new data formats to existing format
                


                		
                  Reorganize new data format to middle format
                


                		
                  An example of customized dataset
                


              


            


            		
              Customize datasets by dataset wrappers
              
                		
                  Repeat dataset
                


                		
                  Class balanced dataset
                


                		
                  Concatenate dataset
                


              


            


            		
              Modify Dataset Classes
            


          


        


        		
          Tutorial 3: Customize Data Pipelines
          
            		
              Design of Data pipelines
              
                		
                  Data loading
                


                		
                  Pre-processing
                


                		
                  Formatting
                


                		
                  Test time augmentation
                


              


            


            		
              Extend and use custom pipelines
            


          


        


        		
          Tutorial 4: Customize Models
          
            		
              Develop new components
              
                		
                  Add a new encoder
                


                		
                  Add a new backbone
                


                		
                  Add new necks
                


                		
                  Add new heads
                


                		
                  Add new loss
                


              


            


          


        


        		
          Tutorial 5: Customize Runtime Settings
          
            		
              Customize optimization settings
              
                		
                  Customize optimizer supported by PyTorch
                


                		
                  Customize self-implemented optimizer
                


                		
                  Customize optimizer constructor
                


                		
                  Additional settings
                


              


            


            		
              Customize training schedules
            


            		
              Customize workflow
            


            		
              Customize hooks
              
                		
                  Customize self-implemented hooks
                


                		
                  Use hooks implemented in MMCV
                


                		
                  Modify default runtime hooks
                


              


            


          


        


        		
          Tutorial 6: Coordinate System
          
            		
              Overview
            


            		
              Definition of the yaw angle
            


            		
              Definition of the box dimensions
            


            		
              Relation with raw coordinate systems of supported datasets
              
                		
                  KITTI
                


                		
                  Waymo
                


                		
                  NuScenes
                


                		
                  Lyft
                


                		
                  ScanNet
                


                		
                  SUN RGB-D
                


                		
                  S3DIS
                


              


            


            		
              Examples
              
                		
                  Box conversion (between different coordinate systems)
                


                		
                  Bird’s Eye View
                


                		
                  Rotation of boxes
                


              


            


            		
              Common FAQ
              
                		
                  Q1: Are the box related ops universal to all coordinate system types?
                


                		
                  Q2: In every coordinate system, do the three axes point exactly to the right, the front, and the ground, respectively?
                


                		
                  Q3: How does a phase difference of 2\pi in the yaw angle of a box affect evaluation?
                


                		
                  Q4: How does a phase difference of \pi in the yaw angle of a box affect evaluation?
                


              


            


          


        


        		
          Tutorial 7: Backends Support
          
            		
              Load data and annotations from Ceph
            


            		
              Load pretrained model from Ceph
            


            		
              Load checkpoint from Ceph
            


            		
              Save checkpoint into Ceph
            


            		
              EvalHook saves the best checkpoint into Ceph
            


            		
              Save the training log into Ceph
            


          


        


        		
          Log Analysis
        


        		
          Visualization
          
            		
              Results
            


            		
              Dataset
            


          


        


        		
          Model Serving
          
            		
              1. Convert the model from MMDetection3D to TorchServe
            


            		
              2. Build mmdet3d-serve docker image
            


            		
              3. Run mmdet3d-serve
            


            		
              4. Test deployment
            


          


        


        		
          Model Complexity
        


        		
          Model Conversion
          
            		
              RegNet model to MMDetection
            


            		
              Detectron ResNet to Pytorch
            


            		
              Prepare a model for publishing
            


          


        


        		
          Dataset Conversion
        


        		
          Miscellaneous
          
            		
              Print the entire config
            


          


        


        		
          Benchmarks
          
            		
              Settings
            


            		
              Main Results
            


            		
              Details of Comparison
              
                		
                  Modification for Calculating Speed
                


                		
                  VoteNet
                


                		
                  PointPillars-car
                


                		
                  PointPillars-3class
                


                		
                  SECOND
                


                		
                  Part-A2
                


              


            


          


        


        		
          FAQ
          
            		
              MMCV/MMDet/MMDet3D Installation
            


            		
              How to annotate point cloud?
            


          


        


        		
          v1.0.0rc1
          
            		
              Operators Migration
            


            		
              Waymo dataset converter refactoring
            


          


        


        		
          v1.0.0rc0
          
            		
              Coordinate system refactoring
              
                		
                  NOTICE!!
                


                		
                  Other BC-breaking or new features:
                


              


            


          


        


        		
          0.16.0
          
            		
              Returned values of QueryAndGroup operation
            


            		
              NuScenes coco-style data pre-processing
            


            		
              ScanNet dataset for ImVoxelNet
            


          


        


        		
          0.15.0
          
            		
              MMCV Version
            


            		
              Unified parameter initialization
            


            		
              BackgroundPointsFilter
            


            		
              Enhance IndoorPatchPointSample transform
            


          


        


        		
          0.14.0
          
            		
              Dataset class for 3D segmentation task
            


            		
              ScanNet data pre-processing
            


          


        


        		
          0.12.0
          
            		
              SUNRGBD dataset for ImVoteNet
            


          


        


        		
          0.6.0
          
            		
              VoteNet and H3DNet model structure update
            


          


        


        		
          mmdet3d.core
          
            		
              anchor
            


            		
              bbox
            


            		
              evaluation
            


            		
              visualizer
            


            		
              voxel
            


            		
              post_processing
            


          


        


        		
          mmdet3d.datasets
        


        		
          mmdet3d.models
          
            		
              detectors
            


            		
              backbones
            


            		
              necks
            


 