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CHAPTER

ONE

GET STARTED

1.1 Prerequisites

In this section, we demonstrate how to prepare an environment with PyTorch.

MMDetection3D works on Linux, Windows (experimental support) and macOS. It requires Python 3.7+, CUDA 9.2+,
and PyTorch 1.6+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

1.2 Installation

We recommend that users follow our best practices to install MMDetection3D. However, the whole process is highly
customizable. See Customize Installation section for more information.
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1.2.1 Best Practices

Step 0. Install MMEngine, MMCV and MMDetection using MIM.

pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc4'
mim install 'mmdet>=3.0.0'

Note: In MMCV-v2.x, mmcv-full is renamed to mmcv, if you want to install mmcv without CUDA ops, you can use
mim install "mmcv-lite>=2.0.0rc4" to install the lite version.

Step 1. Install MMDetection3D.

Case a: If you develop and run mmdet3d directly, install it from source:

git clone https://github.com/open-mmlab/mmdetection3d.git -b dev-1.x
# "-b dev-1.x" means checkout to the `dev-1.x` branch.
cd mmdetection3d
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in edtiable mode,
# thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use mmdet3d as a dependency or third-party package, install it with MIM:

mim install "mmdet3d>=1.1.0rc0"

Note:

1. If you would like to use opencv-python-headless instead of opencv-python, you can install it before in-
stalling MMCV.

2. Some dependencies are optional. Simply running pip install -v -e . will only install the minimum run-
time requirements. To use optional dependencies like albumentations and imagecorruptions either install
them manually with pip install -r requirements/optional.txt or specify desired extras when calling
pip (e.g. pip install -v -e .[optional]). Valid keys for the extras field are: all, tests, build, and
optional.

We have supported spconv 2.0. If the user has installed spconv 2.0, the code will use spconv 2.0 first,
which will take up less GPU memory than using the default mmcv spconv. Users can use the following com-
mands to install spconv 2.0:

pip install cumm-cuxxx
pip install spconv-cuxxx

Where xxx is the CUDA version in the environment.

For example, using CUDA 10.2, the command will be pip install cumm-cu102 && pip install
spconv-cu102.

Supported CUDA versions include 10.2, 11.1, 11.3, and 11.4. Users can also install it by building from the
source. For more details please refer to spconv v2.x.

We also support Minkowski Engine as a sparse convolution backend. If necessary please follow original in-
stallation guide or use pip to install it:
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conda install openblas-devel -c anaconda
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-
→˓option="--blas_include_dirs=/opt/conda/include" --install-option="--blas=openblas"

We also support Torchsparse as a sparse convolution backend. If necessary please follow original installation
guide or use pip to install it:

sudo apt-get install libsparsehash-dev
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0

or omit sudo install by following command:

conda install -c bioconda sparsehash
export CPLUS_INCLUDE_PATH=CPLUS_INCLUDE_PATH:${YOUR_CONDA_ENVS_DIR}/include
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0

3. The code can not be built for CPU only environment (where CUDA isn’t available) for now.

1.2.2 Verify the Installation

To verify whether MMDetection3D is installed correctly, we provide some sample codes to run an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmdet3d --config pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car --dest .

The downloading will take several seconds or more, depending on your network environment. When
it is done, you will find two files pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py and
hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth in your current
folder.

Step 2. Verify the inference demo.

Case a: If you install MMDetection3D from source, just run the following command.

python demo/pcd_demo.py demo/data/kitti/000008.bin pointpillars_hv_secfpn_8xb6-160e_
→˓kitti-3d-car.py hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.
→˓pth --show

You will see a visualizer interface with point cloud, where bounding boxes are plotted on cars.

Note:

If you want to input a .ply file, you can use the following function and convert it to .bin format. Then you can use
the converted .bin file to run demo. Note that you need to install pandas and plyfile before using this script. This
function can also be used for data preprocessing for training ply data.

import numpy as np
import pandas as pd
from plyfile import PlyData

def convert_ply(input_path, output_path):
plydata = PlyData.read(input_path) # read file
data = plydata.elements[0].data # read data
data_pd = pd.DataFrame(data) # convert to DataFrame

(continues on next page)
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(continued from previous page)

data_np = np.zeros(data_pd.shape, dtype=np.float) # initialize array to store data
property_names = data[0].dtype.names # read names of properties
for i, name in enumerate(

property_names): # read data by property
data_np[:, i] = data_pd[name]

data_np.astype(np.float32).tofile(output_path)

Examples:

convert_ply('./test.ply', './test.bin')

If you have point clouds in other format (.off, .obj, etc.), you can use trimesh to convert them into .ply.

import trimesh

def to_ply(input_path, output_path, original_type):
mesh = trimesh.load(input_path, file_type=original_type) # read file
mesh.export(output_path, file_type='ply') # convert to ply

Examples:

to_ply('./test.obj', './test.ply', 'obj')

Case b: If you install MMDetection3D with MIM, open your python interpreter and copy&paste the following codes.

from mmdet3d.apis import init_model, inference_detector

config_file = 'pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py'
checkpoint_file = 'hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.
→˓pth'
model = init_model(config_file, checkpoint_file)
inference_detector(model, 'demo/data/kitti/000008.bin')

You will see a list of Det3DDataSample, and the predictions are in the pred_instances_3d, indicating the detected
bounding boxes, labels, and scores.

1.2.3 Customize Installation

CUDA Versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our
recommendations:

• For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

• For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to

4 Chapter 1. Get Started
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install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

Install MMEngine without MIM

To install MMEngine with pip instead of MIM, please follow MMEngine installation guides.

For example, you can install MMEngine by the following command:

pip install mmengine

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command install MMCV built for PyTorch 1.12.x and CUDA 11.6:

pip install "mmcv>=2.0.0rc4" -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.
→˓0/index.html

Install on Google Colab

Google Colab usually has PyTorch installed, thus we only need to install MMEngine, MMCV, MMDetection, and
MMDetection3D with the following commands.

Step 1. Install MMEngine, MMCV and MMDetection using MIM.

!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0rc4,<2.1.0"
!mim install "mmdet>=3.0.0,<3.1.0"

Step 2. Install MMDetection3D from source.

!git clone https://github.com/open-mmlab/mmdetection3d.git -b dev-1.x
%cd mmdetection3d
!pip install -e .

Step 3. Verification.

import mmdet3d
print(mmdet3d.__version__)
# Example output: 1.1.0rc0, or an another version.

Note: Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command to
change the current working directory of Python.

1.2. Installation 5
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Using MMDetection3D with Docker

We provide a Dockerfile to build an image. Ensure that your docker version >= 19.03.

# build an image with PyTorch 1.9, CUDA 11.1
# If you prefer other versions, just modified the Dockerfile
docker build -t mmdetection3d docker/

Run it with:

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d

1.2.4 Troubleshooting

If you have some issues during the installation, please first view the FAQ page. You may open an issue on GitHub if
no solution is found.

1.2.5 Use Multiple Versions of MMDetection3D in Development

Training and testing scripts have already been modified in PYTHONPATH in order to make sure the scripts are using their
own versions of MMDetection3D.

To install the default version of MMDetection3D in your environment, you can exclude the following code in the related
scripts:

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
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CHAPTER

TWO

2: TRAIN WITH CUSTOMIZED DATASETS

In this note, you will know how to train and test predefined models with customized datasets. We use the Waymo
dataset as an example to describe the whole process.

The basic steps are as below:

1. Prepare the customized dataset

2. Prepare a config

3. Train, test, inference models on the customized dataset.

2.1 Prepare the customized dataset

There are three ways to support a new dataset in MMDetection3D:

1. reorganize the dataset into existing format.

2. reorganize the dataset into a standard format.

3. implement a new dataset.

Usually we recommend to use the first two methods which are usually easier than the third.

In this note, we give an example for converting the data into KITTI format, you can refer to this to reorganize your
dataset into kitti format. About the standard format dataset, and you can refer to customize_dataset.md.

Note: We take Waymo as the example here considering its format is totally different from other existing formats. For
other datasets using similar methods to organize data, like Lyft compared to nuScenes, it would be easier to directly
implement the new data converter (for the second approach above) instead of converting it to another format (for the
first approach above).

2.1.1 KITTI dataset format

Firstly, the raw data for 3D object detection from KITTI are typically organized as follows, where ImageSets contains
split files indicating which files belong to training/validation/testing set, calib contains calibration information files,
image_2 and velodyne include image data and point cloud data, and label_2 includes label files for 3D detection.

mmdetection3d
mmdet3d
tools
configs
data

kitti
(continues on next page)
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(continued from previous page)

ImageSets
testing

calib
image_2
velodyne

training
calib
image_2
label_2
velodyne

Specific annotation format is described in the official object development kit. For example, it consists of the following
labels:

#Values Name Description
----------------------------------------------------------------------------

1 type Describes the type of object: 'Car', 'Van', 'Truck',
'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
'Misc' or 'DontCare'

1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries

1 occluded Integer (0,1,2,3) indicating occlusion state:
0 = fully visible, 1 = partly occluded
2 = largely occluded, 3 = unknown

1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):

contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
1 score Only for results: Float, indicating confidence in

detection, needed for p/r curves, higher is better.

Assume we use the Waymo dataset.

After downloading the data, we need to implement a function to convert both the input data and annotation format into
the KITTI style. Then we can implement WaymoDataset inherited from KittiDataset to load the data and perform
training, and implement WaymoMetric inherited from KittiMetric for evaluation.

Specifically, we implement a waymo converter to convert Waymo data into KITTI format and a waymo dataset class
to process it, in addition need to add a waymo metric to evaluate results. Because we preprocess the raw data and
reorganize it like KITTI, the dataset class could be implemented more easily by inheriting from KittiDataset. Regarding
the dataset evaluation metric, because Waymo has its own evaluation approach, we need further implement a new
Waymo metric; more about the metric could refer to metric_and_evaluator.md. Afterward, users can successfully
convert the data format and use WaymoDataset to train and evaluate the model by WaymoMetric.

For more details about the intermediate results of preprocessing of Waymo dataset, please refer to its waymo_det.md.

8 Chapter 2. 2: Train with customized datasets
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2.2 Prepare a config

The second step is to prepare configs such that the dataset could be successfully loaded. In addition, adjusting hyper-
parameters is usually necessary to obtain decent performance in 3D detection.

Suppose we would like to train PointPillars on Waymo to achieve 3D detection for 3 classes, vehicle, cyclist and
pedestrian, we need to prepare dataset config like this, model config like this and combine them like this, compared to
KITTI dataset config, model config and overall.

2.3 Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_
→˓waymoD5-3d-3class.py

For more detailed usages, please refer to the Case 1.

2.4 Test and inference

To test the trained model, you can simply run

python tools/test.py configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_
→˓waymoD5-3d-3class.py work_dirs/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-
→˓3class/latest.pth

Note: To use Waymo evaluation protocol, you need to follow the tutorial and prepare files related to metrics computation
as official instructions.

For more detailed usages for test and inference, please refer to the Case 1.

2.2. Prepare a config 9
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CHAPTER

THREE

BACKENDS SUPPORT

We support different file client backends: Disk, Ceph and LMDB, etc. Here is an example of how to modify configs
for Ceph-based data loading and saving.

3.1 Load data and annotations from Ceph

We support loading data and generated annotation info files (pkl and json) from Ceph:

# set file client backends as Ceph
backend_args = dict(

backend='petrel',
path_mapping=dict({

'./data/nuscenes/':
's3://openmmlab/datasets/detection3d/nuscenes/', # replace the path with your␣

→˓data path on Ceph
'data/nuscenes/':
's3://openmmlab/datasets/detection3d/nuscenes/' # replace the path with your␣

→˓data path on Ceph
}))

db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
sample_groups=dict(Car=15),
classes=class_names,
# set file client for points loader to load training data
points_loader=dict(

type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),

# set file client for data base sampler to load db info file
backend_args=backend_args)

train_pipeline = [
# set file client for loading training data
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_

→˓args=backend_args), (continues on next page)
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(continued from previous page)

# set file client for loading training data annotations
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, backend_

→˓args=backend_args),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(

type='ObjectNoise',
num_try=100,
translation_std=[0.25, 0.25, 0.25],
global_rot_range=[0.0, 0.0],
rot_range=[-0.15707963267, 0.15707963267]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),

dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]
test_pipeline = [

# set file client for loading validation/testing data
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_

→˓args=backend_args),
dict(

type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[

dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D'),
dict(

type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(

type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),

dict(type='Collect3D', keys=['points'])
])

]

data = dict(
# set file client for loading training info files (.pkl)
train=dict(

type='RepeatDataset',
times=2,

(continues on next page)
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(continued from previous page)

dataset=dict(pipeline=train_pipeline, classes=class_names, backend_args=backend_
→˓args)),
# set file client for loading validation info files (.pkl)
val=dict(pipeline=test_pipeline, classes=class_names,backend_args=backend_args),
# set file client for loading testing info files (.pkl)
test=dict(pipeline=test_pipeline, classes=class_names, backend_args=backend_args))

3.2 Load pretrained model from Ceph

model = dict(
pts_backbone=dict(

_delete_=True,
type='NoStemRegNet',
arch='regnetx_1.6gf',
init_cfg=dict(

type='Pretrained', checkpoint='s3://openmmlab/checkpoints/mmdetection3d/
→˓regnetx_1.6gf'), # replace the path with your pretrained model path on Ceph

...

3.3 Load checkpoint from Ceph

# replace the path with your checkpoint path on Ceph
load_from = 's3://openmmlab/checkpoints/mmdetection3d/v0.1.0_models/pointpillars/hv_
→˓pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_
→˓20200620_230614-77663cd6.pth.pth'
resume_from = None
workflow = [('train', 1)]

3.4 Save checkpoint into Ceph

# checkpoint saving
# replace the path with your checkpoint saving path on Ceph
checkpoint_config = dict(interval=1, max_keep_ckpts=2, out_dir='s3://openmmlab/
→˓mmdetection3d')

3.2. Load pretrained model from Ceph 13
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3.5 EvalHook saves the best checkpoint into Ceph

# replace the path with your checkpoint saving path on Ceph
evaluation = dict(interval=1, save_best='bbox', out_dir='s3://openmmlab/mmdetection3d')

3.6 Save the training log into Ceph

The training log will be backed up to the specified Ceph path after training.

log_config = dict(
interval=50,
hooks=[

dict(type='TextLoggerHook', out_dir='s3://openmmlab/mmdetection3d'),
])

You can also delete the local training log after backing up to the specified Ceph path by setting keep_local = False.

log_config = dict(
interval=50,
hooks=[

dict(type='TextLoggerHook', out_dir='s3://openmmlab/mmdetection3d', keep_
→˓local=False),

])
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CHAPTER

FOUR

LEARN ABOUT CONFIGS

MMDetection3D and other OpenMMLab repositories use MMEngine’s config system. It has a modular and inheritance
design, which is convenient to conduct various experiments.

4.1 Config file content

MMDetection3D uses a modular design, all modules with different functions can be configured through the config.
Taking PointPillars as an example, we will introduce each field in the config according to different function modules.

4.1.1 Model config

In MMDetection3D’s config, we use model to setup detection algorithm components. In addition to neural net-
work components such as voxel_encoder, backbone etc, it also requires data_preprocessor, train_cfg, and
test_cfg. data_preprocessor is responsible for processing a batch of data output by dataloader. train_cfg and
test_cfg in the model config are training and testing hyperparameters of the components.

model = dict(
type='VoxelNet',
data_preprocessor=dict(

type='Det3DDataPreprocessor',
voxel=True,
voxel_layer=dict(

max_num_points=32,
point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1],
voxel_size=[0.16, 0.16, 4],
max_voxels=(16000, 40000))),

voxel_encoder=dict(
type='PillarFeatureNet',
in_channels=4,
feat_channels=[64],
with_distance=False,
voxel_size=[0.16, 0.16, 4],
point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1]),

middle_encoder=dict(
type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]),

backbone=dict(
type='SECOND',
in_channels=64,
layer_nums=[3, 5, 5],

(continues on next page)
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layer_strides=[2, 2, 2],
out_channels=[64, 128, 256]),

neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),

bbox_head=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=384,
feat_channels=384,
use_direction_classifier=True,
assign_per_class=True,
anchor_generator=dict(

type='AlignedAnchor3DRangeGenerator',
ranges=[[0, -39.68, -0.6, 69.12, 39.68, -0.6],

[0, -39.68, -0.6, 69.12, 39.68, -0.6],
[0, -39.68, -1.78, 69.12, 39.68, -1.78]],

sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
rotations=[0, 1.57],
reshape_out=False),

diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(

type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),

loss_bbox=dict(
type='mmdet.SmoothL1Loss',
beta=0.1111111111111111,
loss_weight=2.0),

loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),

train_cfg=dict(
assigner=[

dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),

dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,

(continues on next page)
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ignore_iof_thr=-1),
dict(

type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)

],
allowed_border=0,
pos_weight=-1,
debug=False),

test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))

4.1.2 Dataset and evaluator config

Dataloaders are required for the training, validation, and testing of the runner. Dataset and data pipeline need to be
set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of
dataloader configs.

dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(

filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),

classes=class_names,
sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15),
points_loader=dict(

type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))

train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),

(continues on next page)

4.1. Config file content 17

https://pytorch.org/docs/stable/data.html?highlight=data%20loader#torch.utils.data.DataLoader
https://mmengine.readthedocs.io/en/latest/tutorials/runner.html


mmcv Documentation, Release 1.1.0

(continued from previous page)

dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),

dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])

]
test_pipeline = [

dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(

type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[

dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D'),
dict(

type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),

dict(type='Pack3DDetInputs', keys=['points'])
]
eval_pipeline = [

dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='Pack3DDetInputs', keys=['points'])

]
train_dataloader = dict(

batch_size=6,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(

type='RepeatDataset',
times=2,
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='kitti_infos_train.pkl',
data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
box_type_3d='LiDAR')))

(continues on next page)
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val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))

test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))

Evaluators are used to compute the metrics of the trained model on the validation and testing datasets. The config of
evaluators consists of one or a list of metric configs:

val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox')

test_evaluator = val_evaluator

Since the test dataset has no annotation files, the test_dataloader and test_evaluator config in MMDetection3D are
generally equal to the val’s. If you want to save the detection results on the test dataset, you can write the config like
this:

# inference on test dataset and
# format the output results for submission.
test_dataloader = dict(

batch_size=1,
num_workers=1,
persistent_workers=True,

(continues on next page)
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drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='testing/velodyne_reduced'),
ann_file='kitti_infos_test.pkl',
load_eval_anns=False,
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))

test_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_test.pkl',
metric='bbox',
format_only=True,
submission_prefix='results/kitti-3class/kitti_results')

4.1.3 Training and testing config

MMEngine’s runner uses Loop to control the training, validation, and testing processes. Users can set the maximum
training epochs and validation intervals with these fields:

train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=80,
val_interval=2)

val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

4.1.4 Optimization config

optim_wrapper is the field to configure optimization-related settings. The optimizer wrapper not only provides the
functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find
more in optimizer wrapper tutorial.

optim_wrapper = dict( # Optimizer wrapper config
type='OptimWrapper', # Optimizer wrapper type, switch to AmpOptimWrapper to enable␣

→˓mixed precision training.
optimizer=dict( # Optimizer config. Support all kinds of optimizers in PyTorch.␣

→˓Refer to https://pytorch.org/docs/stable/optim.html#algorithms
type='AdamW', lr=0.001, betas=(0.95, 0.99), weight_decay=0.01),

clip_grad=dict(max_norm=35, norm_type=2)) # Gradient clip option. Set None to␣
→˓disable gradient clip. Find usage in https://mmengine.readthedocs.io/en/latest/
→˓tutorials/optim_wrapper.html

param_scheduler is a field that configures methods of adjusting optimization hyperparameters such as learning rate
and momentum. Users can combine multiple schedulers to create a desired parameter adjustment strategy. Find more
in parameter scheduler tutorial and parameter scheduler API documents.
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param_scheduler = [
dict(

type='CosineAnnealingLR',
T_max=32,
eta_min=0.01,
begin=0,
end=32,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=48,
eta_min=1.0000000000000001e-07,
begin=32,
end=80,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingMomentum',
T_max=32,
eta_min=0.8947368421052632,
begin=0,
end=32,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingMomentum',
T_max=48,
eta_min=1,
begin=32,
end=80,
by_epoch=True,
convert_to_iter_based=True),

]

4.1.5 Hook config

Users can attach Hooks to training, validation, and testing loops to insert some operations during running. There are
two different hook fields, one is default_hooks and the other is custom_hooks.

default_hooks is a dict of hook configs, and they are the hooks must be required at the runtime. They have default
priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users
can set its config to None.

default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=-1),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='Det3DVisualizationHook'))

custom_hooks is a list of all other hook configs. Users can develop their own hooks and insert them in this field.
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custom_hooks = []

4.1.6 Runtime config

default_scope = 'mmdet3d' # The default registry scope to find modules. Refer to https:/
→˓/mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html

env_cfg = dict(
cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict( # Multi-processing config

mp_start_method='fork', # Use fork to start multi-processing threads. 'fork'␣
→˓usually faster than 'spawn' but maybe unsafe. See discussion in https://github.com/
→˓pytorch/pytorch/issues/1355

opencv_num_threads=0), # Disable opencv multi-threads to avoid system being␣
→˓overloaded

dist_cfg=dict(backend='nccl')) # Distribution configs

vis_backends = [dict(type='LocalVisBackend')] # Visualization backends. Refer to https:/
→˓/mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html
visualizer = dict(

type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')

log_processor = dict(
type='LogProcessor', # Log processor to process runtime logs
window_size=50, # Smooth interval of log values
by_epoch=True) # Whether to format logs with epoch type. Should be consistent with␣

→˓the train loop's type.

log_level = 'INFO' # The level of logging.
load_from = None # Load model checkpoint as a pre-trained model from a given path. This␣
→˓will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_
→˓from` is None, it will resume the latest checkpoint in the `work_dir`.

4.2 Config file inheritance

There are 4 basic component types under configs/_base_, dataset, model, schedule, default_runtime. Many methods
could be easily constructed with one of these models like SECOND, PointPillars, PartA2, VoteNet. The configs that
are composed of components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods. For example, if some modifi-
cation is made based on PointPillars, users may first inherit the basic PointPillars structure by specifying _base_ =
'../pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py', then modify the necessary fields
in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may
create a folder xxx_rcnn under configs.

Please refer to MMEngine config tutorial for detailed documentation.
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By setting the _base_ field, we can set which files the current configuration file inherits from.

When _base_ is a string of a file path, it means inheriting the contents from one config file.

_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'

When _base_ is a list of multiple file paths, it means inheriting from multiple files.

_base_ = [
'../_base_/models/pointpillars_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'

]

If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to
see the complete config.

4.2.1 Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of the fields in base configs. You may refer to MMEngine
config tutorial for a simple illustration.

In MMDetection3D, for example, to change the neck of PointPillars with the following config:

model = dict(
type='MVXFasterRCNN',
data_preprocessor=dict(voxel_layer=dict(...)),
pts_voxel_encoder=dict(...),
pts_middle_encoder=dict(...),
pts_backbone=dict(...),
pts_neck=dict(

type='FPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
act_cfg=dict(type='ReLU'),
in_channels=[64, 128, 256],
out_channels=256,
start_level=0,
num_outs=3),

pts_bbox_head=dict(...))

FPN and SECONDFPN use different keywords to construct:

_base_ = '../_base_/models/pointpillars_hv_fpn_nus.py'
model = dict(

pts_neck=dict(
_delete_=True,
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),

pts_bbox_head=dict(...))

The _delete_=True would replace all old keys in pts_neck field with new keys.

4.2. Config file inheritance 23

https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html
https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html


mmcv Documentation, Release 1.1.0

4.2.2 Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s
worth noting that when modifying intermediate variables in the children configs, user needs to pass the intermediate
variables into corresponding fields again. For example, we would like to use a multi-scale strategy to train and test a
PointPillars, train_pipeline/test_pipeline are intermediate variables we would like to modify.

_base_ = './nus-3d.py'
train_pipeline = [

dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])

]
test_pipeline = [

dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),

dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=[0.95, 1.0, 1.05],
flip=False,
transforms=[

dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],

(continues on next page)
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translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(

type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),

dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))

We first define the new train_pipeline/test_pipeline and pass them into dataloader fields.

4.2.3 Reuse variables in _base_ file

If the users want to reuse the variables in the base file, they can get a copy of the corresponding variable by using
{{_base_.xxx}}. E.g:

_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'

a = {{_base_.model}} # variable `a` is equal to the `model` defined in `_base_`

4.3 Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place
modify the config.

• Update config keys of dict chains

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs

Some config dicts are composed as a list in your config. For example, the training pipeline train_dataloader.
dataset.pipeline is normally a list e.g. [dict(type='LoadPointsFromFile'), ...]. If you
want to change 'LoadPointsFromFile' to 'LoadPointsFromDict' in the pipeline, you may specify
--cfg-options data.train.pipeline.0.type=LoadPointsFromDict.

• Update values of list/tuple

If the value to be updated is a list or a tuple. For example, the config file normally sets model.
data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to change the mean values, you
may specify --cfg-options model.data_preprocessor.mean="[127,127,127]". Note that the quota-
tion mark " is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation
marks in the specified value.
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4.4 Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{algorithm name}_{model component names [component1]_[component2]_[...]}_{training␣
→˓settings}_{training dataset information}_{testing dataset information}.py

The file name is divided to five parts. All parts and components are connected with _ and words of each part or
component should be connected with -.

• {algorithm name}: The name of the algorithm. It can be a detector name such as pointpillars, fcos3d,
etc.

• {model component names}: Names of the components used in the algorithm such as voxel_encoder, back-
bone, neck, etc. For example, second_secfpn_head-dcn-circlenms means using SECOND’s SparseEn-
coder, SECONDFPN and a detection head with DCN and circle NMS.

• {training settings}: Information of training settings such as batch size, augmentations, loss trick, sched-
uler, and epochs/iterations. For example: 8xb4-tta-cyclic-20e means using 8-gpus x 4-samples-per-gpu,
test time augmentation, cyclic annealing learning rate, and train 20 epochs. Some abbreviations:

– {gpu x batch_per_gpu}: GPUs and samples per GPU. bN indicates N batch size per GPU. E.g. 4xb4
is the short term of 4-GPUs x 4-samples-per-GPU.

– {schedule}: training schedule, options are schedule-2x, schedule-3x, cyclic-20e, etc.
schedule-2x and schedule-3x mean 24 epochs and 36 epochs respectively. cyclic-20e means 20
epochs respectively.

• {training dataset information}: Training dataset names like kitti-3d-3class, nus-3d, s3dis-seg,
scannet-seg, waymoD5-3d-car. Here 3d means dataset used for 3D object detection, and seg means dataset
used for point cloud segmentation.

• {testing dataset information} (optional): Testing dataset name for models trained on one dataset but
tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.
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FIVE

COORDINATE SYSTEM

5.1 Overview

MMDetection3D uses three different coordinate systems. The existence of different coordinate systems in the society
of 3D object detection is necessary, because for various 3D data collection devices, such as LiDAR, depth camera, etc.,
the coordinate systems are not consistent, and different 3D datasets also follow different data formats. Early works,
such as SECOND, VoteNet, convert the raw data to another format, forming conventions that some later works also
follow, making the conversion between coordinate systems even more complicated.

Despite the variety of datasets and equipment, by summarizing the line of works on 3D object detection we can roughly
categorize coordinate systems into three:

• Camera coordinate system – the coordinate system of most cameras, in which the positive direction of the y-axis
points to the ground, the positive direction of the x-axis points to the right, and the positive direction of the z-axis
points to the front.

up z front
| ^
| /
| /
| /
|/

left ------ 0 ------> x right
|
|
|
|
v

y down

• LiDAR coordinate system – the coordinate system of many LiDARs, in which the negative direction of the z-axis
points to the ground, the positive direction of the x-axis points to the front, and the positive direction of the y-axis
points to the left.

z up x front
^ ^
| /
| /
| /
|/

y left <------ 0 ------ right
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• Depth coordinate system – the coordinate system used by VoteNet, H3DNet, etc., in which the negative direction
of the z-axis points to the ground, the positive direction of the x-axis points to the right, and the positive direction
of the y-axis points to the front.

z up y front
^ ^
| /
| /
| /
|/

left ------ 0 ------> x right

The definition of coordinate systems in this tutorial is actually more than just defining the three axes. For a box in
the form of (𝑥, 𝑦, 𝑧, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑟), our coordinate systems also define how to interpret the box dimensions (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)
and the yaw angle 𝑟.

The illustration of the three coordinate systems is shown below:

The three figures above are the 3D coordinate systems while the three figures below are the bird’s eye view.

We will stick to the three coordinate systems defined in this tutorial in the future.

5.2 Definition of the yaw angle

Please refer to wikipedia for the standard definition of the yaw angle. In object detection, we choose an axis as the
gravity axis, and a reference direction on the plane Π perpendicular to the gravity axis, then the reference direction
has a yaw angle of 0, and other directions on Π have non-zero yaw angles depending on its angle with the reference
direction.

Currently, for all supported datasets, annotations do not include pitch angle and roll angle, which means we need only
consider the yaw angle when predicting boxes and calculating overlap between boxes.

In MMDetection3D, all three coordinate systems are right-handed coordinate systems, which means the ascending
direction of the yaw angle is counter-clockwise if viewed from the negative direction of the gravity axis (the axis is
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pointing at one’s eyes).

The figure below shows that, in this right-handed coordinate system, if we set the positive direction of the x-axis as a
reference direction, then the positive direction of the y-axis has a yaw angle of 𝜋

2 .

z up y front (yaw=0.5*pi)
^ ^
| /
| /
| /
|/

left (yaw=pi) ------ 0 ------> x right (yaw=0)

For a box, the value of its yaw angle equals its direction minus a reference direction. In all three coordinate systems in
MMDetection3D, the reference direction is always the positive direction of the x-axis, while the direction of a box is
defined to be parallel with the x-axis if its yaw angle is 0. The definition of the yaw angle of a box is illustrated in the
figure below.

y front
^ box direction (yaw=0.5*pi)

/|\ ^
| /|\
| ____|____
| | | |
| | | |

__|____|____|____|______\ x right
| | | | /
| | | |
| |____|____|
|

5.3 Definition of the box dimensions

The definition of the box dimensions cannot be disentangled with the definition of the yaw angle. In the previous
section, we said that the direction of a box is defined to be parallel with the x-axis if its yaw angle is 0. Then naturally,
the dimension of a box which corresponds to the x-axis should be 𝑑𝑥. However, this is not always the case in some
datasets (we will address that later).

The following figures show the meaning of the correspondence between the x-axis and 𝑑𝑥, and between the y-axis and
𝑑𝑦.

y front
^ box direction (yaw=0.5*pi)

/|\ ^
| /|\
| ____|____
| | | |
| | | | dx

__|____|____|____|______\ x right
| | | | /
| | | |
| |____|____|
| dy
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Note that the box direction is always parallel with the edge 𝑑𝑥.

y front
^ _________

/|\ | | |
| | | |
| | | | dy
| |____|____|____\ box direction (yaw=0)
| | | | /

__|____|____|____|_________\ x right
| | | | /
| |____|____|
| dx
|

5.4 Relation with raw coordinate systems of supported datasets

5.4.1 KITTI

The raw annotation of KITTI is under camera coordinate system, see get_label_anno. In MMDetection3D, to train
LiDAR-based models on KITTI, the data is first converted from camera coordinate system to LiDAR coordinate system,
see get_ann_info. For training vision-based models, the data is kept in the camera coordinate system.

In SECOND, the LiDAR coordinate system for a box is defined as follows (a bird’s eye view):

For each box, the dimensions are (𝑤, 𝑙, ℎ), and the reference direction for the yaw angle is the positive direction of the
y axis. For more details, refer to the repo.

Our LiDAR coordinate system has two changes:

• The yaw angle is defined to be right-handed instead of left-handed for consistency;

• The box dimensions are (𝑙, 𝑤, ℎ) instead of (𝑤, 𝑙, ℎ), since𝑤 corresponds to 𝑑𝑦 and 𝑙 corresponds to 𝑑𝑥 in KITTI.
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5.4.2 Waymo

We use the KITTI-format data of Waymo dataset. Therefore, KITTI and Waymo also share the same coordinate system
in our implementation.

5.4.3 NuScenes

NuScenes provides a toolkit for evaluation, in which each box is wrapped into a Box instance. The coordinate system
of Box is different from our LiDAR coordinate system in that the first two elements of the box dimension correspond
to (𝑑𝑦, 𝑑𝑥), or (𝑤, 𝑙), respectively, instead of the reverse. For more details, please refer to the NuScenes tutorial.

Readers may refer to the NuScenes development kit for the definition of a NuScenes box and implementation of
NuScenes evaluation.

5.4.4 Lyft

Lyft shares the same data format with NuScenes as far as coordinate system is involved.

Please refer to the official website for more information.

5.4.5 ScanNet

The raw data of ScanNet is not point cloud but mesh. The sampled point cloud data is under our depth coordinate
system. For ScanNet detection task, the box annotations are axis-aligned, and the yaw angle is always zero. Therefore
the direction of the yaw angle in our depth coordinate system makes no difference regarding ScanNet.

5.4.6 SUN RGB-D

The raw data of SUN RGB-D is not point cloud but RGB-D image. By back projection, we obtain the corresponding
point cloud for each image, which is under our Depth coordinate system. However, the annotation is not under our
system and thus needs conversion.

For the conversion from raw annotation to annotation under our Depth coordinate system, please refer to sun-
rgbd_data_utils.py.

5.4.7 S3DIS

S3DIS shares the same coordinate system as ScanNet in our implementation. However, S3DIS is a segmentation-task-
only dataset, and thus no annotation is coordinate system sensitive.

5.5 Examples

5.5.1 Box conversion (between different coordinate systems)

Take the conversion between our Camera coordinate system and LiDAR coordinate system as an example:

First, for points and box centers, the coordinates before and after the conversion satisfy the following relationship:

• 𝑥𝐿𝑖𝐷𝐴𝑅 = 𝑧𝑐𝑎𝑚𝑒𝑟𝑎

• 𝑦𝐿𝑖𝐷𝐴𝑅 = −𝑥𝑐𝑎𝑚𝑒𝑟𝑎
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• 𝑧𝐿𝑖𝐷𝐴𝑅 = −𝑦𝑐𝑎𝑚𝑒𝑟𝑎

Then, the box dimensions before and after the conversion satisfy the following relationship:

• 𝑑𝑥𝐿𝑖𝐷𝐴𝑅 = 𝑑𝑥𝑐𝑎𝑚𝑒𝑟𝑎

• 𝑑𝑦𝐿𝑖𝐷𝐴𝑅 = 𝑑𝑧𝑐𝑎𝑚𝑒𝑟𝑎

• 𝑑𝑧𝐿𝑖𝐷𝐴𝑅 = 𝑑𝑦𝑐𝑎𝑚𝑒𝑟𝑎

Finally, the yaw angle should also be converted:

• 𝑟𝐿𝑖𝐷𝐴𝑅 = −𝜋
2 − 𝑟𝑐𝑎𝑚𝑒𝑟𝑎

See the code here for more details.

5.5.2 Bird’s Eye View

The BEV of a camera coordinate system box is (𝑥, 𝑧, 𝑑𝑥, 𝑑𝑧,−𝑟) if the 3D box is (𝑥, 𝑦, 𝑧, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑟). The inversion
of the sign of the yaw angle is because the positive direction of the gravity axis of the Camera coordinate system points
to the ground.

See the code here for more details.

5.5.3 Rotation of boxes

We set the rotation of all kinds of boxes to be counter-clockwise about the gravity axis. Therefore, to rotate a 3D box
we first calculate the new box center, and then we add the rotation angle to the yaw angle.

See the code here for more details.

5.6 Common FAQ

5.6.1 Q1: Are the box related ops universal to all coordinate system types?

No. For example, RoI-Aware Pooling ops is applicable to boxes under Depth or LiDAR coordinate system only. The
evaluation functions for KITTI dataset here are only applicable to boxes under Camera coordinate system since the
rotation is clockwise if viewed from above.

For each box related op, we have marked the type of boxes to which we can apply the op.

5.6.2 Q2: In every coordinate system, do the three axes point exactly to the right,
the front, and the ground, respectively?

No. For example, in KITTI, we need a calibration matrix when converting from Camera coordinate system to LiDAR
coordinate system.
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5.6.3 Q3: How does a phase difference of 2𝜋 in the yaw angle of a box affect evalu-
ation?

For IoU calculation, a phase difference of 2𝜋 in the yaw angle will result in the same box, thus not affecting evaluation.

For angle prediction evaluation such as the NDS metric in NuScenes and the AOS metric in KITTI, the angle of
predicted boxes will be first standardized, so the phase difference of 2𝜋 will not change the result.

5.6.4 Q4: How does a phase difference of 𝜋 in the yaw angle of a box affect evalua-
tion?

For IoU calculation, a phase difference of 𝜋 in the yaw angle will result in the same box, thus not affecting evaluation.

However, for angle prediction evaluation, this will result in the exact opposite direction.

Just think about a car. The yaw angle is the angle between the direction of the car front and the positive direction of
the x-axis. If we add 𝜋 to this angle, the car front will become the car rear.

For categories such as barrier, the front and the rear have no difference, therefore a phase difference of 𝜋 will not affect
the angle prediction score.
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CHAPTER

SIX

CUSTOMIZE DATA PIPELINES

6.1 Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Dataset
returns a dict of data items corresponding the arguments of models’ forward method. Since the data in object detection
may not be the same size (point number, gt bbox size, etc.), we introduce a new DataContainer type in MMCV to
help collect and distribute data of different size. See here for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations
and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each
operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going
on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is an pipeline example for PointPillars.

train_pipeline = [
dict(

type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],

(continues on next page)
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(continued from previous page)

scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]
test_pipeline = [

dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),

dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
pts_scale_ratio=1.0,
flip=False,
pcd_horizontal_flip=False,
pcd_vertical_flip=False,
transforms=[

dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D'),
dict(

type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(

type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),

dict(type='Collect3D', keys=['points'])
])

]

For each operation, we list the related dict fields that are added/updated/removed.
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6.1.1 Data loading

LoadPointsFromFile

• add: points

LoadPointsFromMultiSweeps

• update: points

LoadAnnotations3D

• add: gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels, pts_instance_mask, pts_semantic_mask, bbox3d_fields,
pts_mask_fields, pts_seg_fields

6.1.2 Pre-processing

GlobalRotScaleTrans

• add: pcd_trans, pcd_rotation, pcd_scale_factor

• update: points, *bbox3d_fields

RandomFlip3D

• add: flip, pcd_horizontal_flip, pcd_vertical_flip

• update: points, *bbox3d_fields

PointsRangeFilter

• update: points

ObjectRangeFilter

• update: gt_bboxes_3d, gt_labels_3d

ObjectNameFilter

• update: gt_bboxes_3d, gt_labels_3d

PointShuffle

• update: points

PointsRangeFilter

• update: points

6.1.3 Formatting

DefaultFormatBundle3D

• update: points, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels

Collect3D

• add: img_meta (the keys of img_meta is specified by meta_keys)

• remove: all other keys except for those specified by keys
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6.1.4 Test time augmentation

MultiScaleFlipAug

• update: scale, pcd_scale_factor, flip, flip_direction, pcd_horizontal_flip, pcd_vertical_flip with list of augmented
data with these specific parameters

6.2 Extend and use custom pipelines

1. Write a new pipeline in any file, e.g., my_pipeline.py. It takes a dict as input and return a dict.

from mmdet.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform:

def __call__(self, results):
results['dummy'] = True
return results

2. Import the new class.

from .my_pipeline import MyTransform

3. Use it in config files.

train_pipeline = [
dict(

type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='MyTransform'),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]
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CHAPTER

SEVEN

DATASET PREPARATION

7.1 Before Preparation

It is recommended to symlink the dataset root to $MMDETECTION3D/data. If your folder structure is different from the
following, you may need to change the corresponding paths in config files.

mmdetection3d
mmdet3d
tools
configs
data

nuscenes
maps
samples
sweeps
v1.0-test

| | v1.0-trainval
kitti

ImageSets
testing

calib
image_2
velodyne

training
calib
image_2
label_2
velodyne

waymo
waymo_format

training
validation
testing
gt.bin

kitti_format
ImageSets

lyft
v1.01-train

v1.01-train (train_data)
lidar (train_lidar)

(continues on next page)
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(continued from previous page)

images (train_images)
maps (train_maps)

v1.01-test
v1.01-test (test_data)
lidar (test_lidar)
images (test_images)
maps (test_maps)

train.txt
val.txt
test.txt
sample_submission.csv

s3dis
meta_data
Stanford3dDataset_v1.2_Aligned_Version
collect_indoor3d_data.py
indoor3d_util.py
README.md

scannet
meta_data
scans
scans_test
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md

sunrgbd
OFFICIAL_SUNRGBD
matlab
sunrgbd_data.py
sunrgbd_utils.py
README.md

7.2 Download and Data Preparation

7.2.1 KITTI

Download KITTI 3D detection data HERE. Prepare KITTI data splits by running:

mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/test.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/train.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/val.txt (continues on next page)

40 Chapter 7. Dataset Preparation

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d


mmcv Documentation, Release 1.1.0

(continued from previous page)

wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/trainval.txt

Then generate info files by running:

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --
→˓extra-tag kitti

In an environment using slurm, users may run the following command instead:

sh tools/create_data.sh <partition> kitti

7.2.2 Waymo

Download Waymo open dataset V1.2 HERE and its data split HERE. Then put .tfrecord files into corresponding fold-
ers in data/waymo/waymo_format/ and put the data split .txt files into data/waymo/kitti_format/ImageSets.
Download ground truth .bin file for validation set HERE and put it into data/waymo/waymo_format/. A tip is that
you can use gsutil to download the large-scale dataset with commands. You can take this tool as an example for more
details. Subsequently, prepare waymo data by running:

python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --
→˓workers 128 --extra-tag waymo

Note that:

• If your local disk does not have enough space for saving converted data, you can change the --out-dir to
anywhere else. Just remember to create folders and prepare data there in advance and link them back to data/
waymo/kitti_format after the data conversion.

• If you want faster evaluation on Waymo, you can download the preprocessed metainfo containing contextname
and timestamp to the directory data/waymo/waymo_format/. Then, the dataset config is modified like the
following:

val_evaluator = dict(
type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format',
backend_args=backend_args,
convert_kitti_format=True,
idx2metainfo='data/waymo/waymo_format/idx2metainfo.pkl'
)

Now, this trick is only used for LiDAR-based detection methods.
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7.2.3 NuScenes

Download nuScenes V1.0 full dataset data HERE. Prepare nuscenes data by running:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/
→˓nuscenes --extra-tag nuscenes

7.2.4 Lyft

Download Lyft 3D detection data HERE. Prepare Lyft data by running:

python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-
→˓tag lyft --version v1.01
python tools/dataset_converters/lyft_data_fixer.py --version v1.01 --root-folder ./data/
→˓lyft

Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above.
Also note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the discussion
for more details.

7.2.5 S3DIS, ScanNet and SUN RGB-D

To prepare S3DIS data, please see its README.

To prepare ScanNet data, please see its README.

To prepare SUN RGB-D data, please see its README.

7.2.6 Customized Datasets

For using custom datasets, please refer to Customize Datasets.

7.2.7 Update data infos

If you have used v1.0.0rc1-v1.0.0rc4 mmdetection3d to create data infos before, and now you want to use the newest
v1.1.0 mmdetection3d, you need to update the data infos file.

python tools/dataset_converters/update_infos_to_v2.py --dataset ${DATA_SET} --pkl-path $
→˓{PKL_PATH} --out-dir ${OUT_DIR}

• --dataset : Name of dataset.

• --pkl-path : Specify the data infos pkl file path.

• --out-dir : Output direction of the data infos pkl file.

Example:

python tools/dataset_converters/update_infos_to_v2.py --dataset kitti --pkl-path ./data/
→˓kitti/kitti_infos_trainval.pkl --out-dir ./data/kitti
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CHAPTER

EIGHT

INFERENCE

8.1 Introduction

We provide scripts for multi-modality/single-modality (LiDAR-based/vision-based), indoor/outdoor 3D detection and
3D semantic segmentation demos. The pre-trained models can be downloaded from model zoo. We provide pre-
processed sample data from KITTI, SUN RGB-D, nuScenes and ScanNet dataset. You can use any other data following
our pre-processing steps.

8.2 Testing

8.2.1 3D Detection

Single-modality demo

To test a 3D detector on point cloud data, simply run:

python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}
→˓] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}] [--show]

The visualization results including a point cloud and predicted 3D bounding boxes will be saved in ${OUT_DIR}/
PCD_NAME, which you can open using MeshLab. Note that if you set the flag --show, the prediction result will be
displayed online using Open3D.

Example on KITTI data using SECOND model:

python demo/pcd_demo.py demo/data/kitti/000008.bin configs/second/second_hv-secfpn_8xb6-
→˓80e_kitti-3d-car.py checkpoints/second_hv-secfpn_8xb6-80e_kitti-3d-car_20200620_230238-
→˓393f000c.pth

Example on SUN RGB-D data using VoteNet model:

python demo/pcd_demo.py demo/data/sunrgbd/sunrgbd_000017.bin configs/votenet/votenet_
→˓8xb16_sunrgbd-3d.py checkpoints/votenet_8xb16_sunrgbd-3d_20200620_230238-4483c0c0.pth

Remember to convert the VoteNet checkpoint if you are using mmdetection3d version >= 0.6.0. See its README for
detailed instructions on how to convert the checkpoint.

43

https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/docs/en/model_zoo.md
http://www.meshlab.net/
http://www.open3d.org/
https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second
https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet/README.md/


mmcv Documentation, Release 1.1.0

Multi-modality demo

To test a 3D detector on multi-modality data (typically point cloud and image), simply run:

python demo/multi_modality_demo.py ${PCD_FILE} ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_
→˓FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir $
→˓{OUT_DIR}] [--show]

where the ANNOTATION_FILE should provide the 3D to 2D projection matrix. The visualization results including a
point cloud, an image, predicted 3D bounding boxes and their projection on the image will be saved in ${OUT_DIR}/
PCD_NAME.

Example on KITTI data using MVX-Net model:

python demo/multi_modality_demo.py demo/data/kitti/000008.bin demo/data/kitti/000008.png␣
→˓demo/data/kitti/000008.pkl configs/mvxnet/mvx_fpn-dv-second-secfpn_8xb2-80e_kitti-3d-
→˓3class.py checkpoints/mvx_fpn-dv-second-secfpn_8xb2-80e_kitti-3d-3class_20200621_
→˓003904-10140f2d.pth

Example on SUN RGB-D data using ImVoteNet model:

python demo/multi_modality_demo.py demo/data/sunrgbd/sunrgbd_000017.bin demo/data/
→˓sunrgbd/sunrgbd_000017.jpg demo/data/sunrgbd/sunrgbd_000017_infos.pkl configs/
→˓imvotenet/imvotenet_stage2_8xb16_sunrgbd.py checkpoints/imvotenet_stage2_8xb16_sunrgbd_
→˓20210323_184021-d44dcb66.pth

8.2.2 Monocular 3D Detection

To test a monocular 3D detector on image data, simply run:

python demo/mono_det_demo.py ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} $
→˓{CHECKPOINT_FILE} [--device ${GPU_ID}] [--cam-type ${CAM_TYPE}] [--score-thr ${SCORE-
→˓THR}] [--out-dir ${OUT_DIR}] [--show]

where the ANNOTATION_FILE should provide the 3D to 2D projection matrix (camera intrinsic matrix), and CAM_TYPE
should be specified according to dataset. For example, if you want to inference on the front camera image, the CAM_TYPE
should be set as CAM_2 for KITTI, and CAM_FRONT for nuScenes. By specifying CAM_TYPE, you can even infer on any
camera images for datasets with multi-view cameras, such as nuScenes and Waymo. SCORE-THR is the 3D bbox thresh-
old while visualization. The visualization results including an image and its predicted 3D bounding boxes projected
on the image will be saved in ${OUT_DIR}/IMG_NAME.

Example on nuScenes data using FCOS3D model:

python demo/mono_det_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__
→˓1532402927637525.jpg demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__
→˓1532402927637525.pkl configs/fcos3d/fcos3d_r101-caffe-dcn-fpn-head-gn_8xb2-1x_nus-
→˓mono3d_finetune.py checkpoints/fcos3d_r101-caffe-dcn-fpn-head-gn_8xb2-1x_nus-mono3d_
→˓finetune_20210717_095645-8d806dc2.pth

Note that when visualizing results of monocular 3D detection for flipped images, the camera intrinsic matrix should
also be modified accordingly. See more details and examples in PR #744.
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8.2.3 3D Segmentation

To test a 3D segmentor on point cloud data, simply run:

python demo/pcd_seg_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device $
→˓{GPU_ID}] [--out-dir ${OUT_DIR}] [--show]

The visualization results including a point cloud and its predicted 3D segmentation mask will be saved in ${OUT_DIR}/
PCD_NAME.

Example on ScanNet data using PointNet++ (SSG) model:

python demo/pc_seg_demo.py demo/data/scannet/scene0000_00.bin configs/pointnet2/
→˓pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py checkpoints/pointnet2_ssg_2xb16-cosine-
→˓200e_scannet-seg_20210514_143644-ee73704a.pth
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CHAPTER

NINE

MODEL DEPLOYMENT

MMDet3D 1.1 fully relies on MMDeploy to deploy models. Please stay tuned and this document will be update soon.
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CHAPTER

TEN

INFERENCE AND TRAIN WITH EXISTING MODELS AND STANDARD
DATASETS

10.1 Inference with existing models

Here we provide testing scripts to evaluate a whole dataset (SUNRGBD, ScanNet, KITTI, etc.).

For high-level apis easier to integrated into other projects and basic demos, please refer to Verification/Demo under
Get Started.

10.1.1 Test existing models on standard datasets

• single GPU

• CPU

• single node multiple GPU

• multiple node

You can use the following commands to test a dataset.

# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--cfg-options test_evaluator.
→˓pklfile_prefix=${RESULT_FILE}] [--show] [--show-dir ${SHOW_DIR}]

# CPU: disable GPUs and run single-gpu testing script (experimental)
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--cfg-options test_evaluator.
→˓pklfile_prefix=${RESULT_FILE}] [--show] [--show-dir ${SHOW_DIR}]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--cfg-options test_
→˓evaluator.pklfile_prefix=${RESULT_FILE}] [--show] [--show-dir ${SHOW_DIR}]

Note:

For now, CPU testing is only supported for SMOKE.

Optional arguments:

• --show: If specified, detection results will be plotted in the silient mode. It is only applicable to single GPU
testing and used for debugging and visualization. This should be used with --show-dir.
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• --show-dir: If specified, detection results will be plotted on the ***_points.obj and ***_pred.obj files
in the specified directory. It is only applicable to single GPU testing and used for debugging and visualization.
You do NOT need a GUI available in your environment for using this option.

All evaluation related arguments are set in the test_evaluator in corresponding dataset configuration. such
as test_evaluator = dict(type='KittiMetric', ann_file=data_root + 'kitti_infos_val.pkl',
pklfile_prefix=None, submission_prefix=None)

The arguments:

• type: The name of the corresponding metric, usually associated with the dataset.

• ann_file: The path of annotation file.

• pklfile_prefix: An optional argument. The filename of the output results in pickle format. If not specified,
the results will not be saved to a file.

• submission_prefix: An optional argument. The results will be saved to a file then you can upload it to do the
official evaluation.

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

1. Test VoteNet on ScanNet and save the points and prediction visualization results.

python tools/test.py configs/votenet/votenet_8xb8_scannet-3d.py \
checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
--show --show-dir ./data/scannet/show_results

2. Test VoteNet on ScanNet, save the points, prediction, groundtruth visualization results, and evaluate the mAP.

python tools/test.py configs/votenet/votenet_8xb8_scannet-3d.py \
checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
--show --show-dir ./data/scannet/show_results

3. Test VoteNet on ScanNet (without saving the test results) and evaluate the mAP.

python tools/test.py configs/votenet/votenet_8xb8_scannet-3d.py \
checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth

4. Test SECOND on KITTI with 8 GPUs, and evaluate the mAP.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/second_hv_secfpn_8xb6-
→˓80e_kitti-3d-3class.py \

checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.
→˓pth

5. Test PointPillars on nuScenes with 8 GPUs, and generate the json file to be submit to the official evaluation server.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/pointpillars_hv_
→˓secfpn_sbn-all_8xb4-2x_nus-3d.py \

checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.
→˓pth \

--cfg-options 'test_evaluator.jsonfile_prefix=./pointpillars_nuscenes_results'

The generated results be under ./pointpillars_nuscenes_results directory.

6. Test SECOND on KITTI with 8 GPUs, and generate the pkl files and submission data to be submit to the official
evaluation server.
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./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/second_hv_secfpn_8xb6-
→˓80e_kitti-3d-3class.py \

checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.
→˓pth \

--cfg-options 'test_evaluator.pklfile_prefix=./second_kitti_results'
→˓'submission_prefix=./second_kitti_results'

The generated results be under ./second_kitti_results directory.

7. Test PointPillars on Lyft with 8 GPUs, generate the pkl files and make a submission to the leaderboard.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_
→˓fpn_sbn-2x8_2x_lyft-3d.py \

checkpoints/hv_pointpillars_fpn_sbn-2x8_2x_lyft-3d_latest.pth \
--cfg-options 'test_evaluator.jsonfile_prefix=results/pp_lyft/results_challenge

→˓' \
'test_evaluator.csv_savepath=results/pp_lyft/results_challenge.csv' \
'test_evaluator.pklfile_prefix=results/pp_lyft/results_challenge.pkl'

Notice: To generate submissions on Lyft, csv_savepath must be given in the --cfg-options. After generat-
ing the csv file, you can make a submission with kaggle commands given on the website.

Note that in the config of Lyft dataset, the value of ann_file keyword in test is 'lyft_infos_test.pkl',
which is the official test set of Lyft without annotation. To test on the validation set, please change this to
'lyft_infos_val.pkl'.

8. Test PointPillars on waymo with 8 GPUs, and evaluate the mAP with waymo metrics.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/pointpillars_hv_
→˓secfpn_sbn-all_16xb2-2x_waymo-3d-car.py \

checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth \
--cfg-options 'test_evaluator.pklfile_prefix=results/waymo-car/kitti_results' \
'test_evaluator.submission_prefix=results/waymo-car/kitti_results'

Notice: For evaluation on waymo, please follow the instruction to build the binary file
compute_detection_metrics_main for metrics computation and put it into mmdet3d/core/evaluation/
waymo_utils/.(Sometimes when using bazel to build compute_detection_metrics_main, an error
'round' is not a member of 'std' may appear. We just need to remove the std:: before round in
that file.) pklfile_prefix should be given in the --eval-options for the bin file generation. For metrics,
waymo is the recommended official evaluation prototype. Currently, evaluating with choice kitti is adapted
from KITTI and the results for each difficulty are not exactly the same as the definition of KITTI. Instead, most
of objects are marked with difficulty 0 currently, which will be fixed in the future. The reasons of its instability
include the large computation for evaluation, the lack of occlusion and truncation in the converted data, different
definition of difficulty and different methods of computing average precision.

9. Test PointPillars on waymo with 8 GPUs, generate the bin files and make a submission to the leaderboard.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/pointpillars_hv_
→˓secfpn_sbn-all_16xb2-2x_waymo-3d-car.py \

checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth \
--cfg-options 'test_evaluator.pklfile_prefix=results/waymo-car/kitti_results' \
'test_evaluator.submission_prefix=results/waymo-car/kitti_results'

Notice: After generating the bin file, you can simply build the binary file create_submission and use them
to create a submission file by following the instruction. For evaluation on the validation set with the eval server,
you can also use the same way to generate a submission.
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10.2 Train predefined models on standard datasets

MMDetection3D implements distributed training and non-distributed training, which uses
MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the
config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by
adding the interval argument in the training config.

train_cfg = dict(type='EpochBasedTrainLoop', val_interval=1) # This evaluate the model␣
→˓per 12 epoch.

Important: The default learning rate in config files is for 8 GPUs and the exact batch size is marked by the config’s
file name, e.g. ‘2xb8’ means 2 samples per GPU using 8 GPUs. According to the Linear Scaling Rule, you need to set
the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs
* 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. However, since most of the models in this repo use ADAM rather
than SGD for optimization, the rule may not hold and users need to tune the learning rate by themselves.

10.2.1 Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work-dir
${YOUR_WORK_DIR}.

10.2.2 Training with CPU (experimental)

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the
training process.

export CUDA_VISIBLE_DEVICES=-1

And then run the script of train with a single GPU.

Note:

For now, most of the point cloud related algorithms rely on 3D CUDA op, which can not be trained on CPU. Some
monocular 3D object detection algorithms, like FCOS3D and SMOKE can be trained on CPU. We do not recommend
users to use CPU for training because it is too slow. We support this feature to allow users to debug certain models on
machines without GPU for convenience.

10.2.3 Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

• --cfg-options 'Key=value': Override some settings in the used config.
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10.2.4 Train with multiple machines

If you run MMDetection3D on a cluster managed with slurm, you can use the script slurm_train.sh. (This script
also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

GPUS=16 ./tools/slurm_train.sh dev pp_kitti_3class configs/pointpillars/pointpillars_hv_
→˓secfpn_8xb6-160e_kitti-3d-3class.py /nfs/xxxx/pp_kitti_3class

You can check slurm_train.sh for full arguments and environment variables.

If you launch with multiple machines simply connected with ethernet, you can simply run following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR ./tools/dist_train.sh
→˓$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR ./tools/dist_train.sh
→˓$CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

10.2.5 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use launch training jobs with Slurm, there are two ways to specify the ports.

1. Set the port through --cfg-options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR} --cfg-options 'env_cfg.dist_cfg.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR} --cfg-options 'env_cfg.dist_cfg.port=29501'

2. Modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.

In config1.py,

env_cfg = dict(
dist_cfg=dict(backend='nccl', port=29500)

)

In config2.py,
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env_cfg = dict(
dist_cfg=dict(backend='nccl', port=29501)

)

Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR}
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CHAPTER

ELEVEN

USEFUL TOOLS

We provide lots of useful tools under tools/ directory.

11.1 Log Analysis

You can plot loss/mAP curves given a training log file. Run pip install seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}
→˓] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}] [-
→˓-mode ${MODE}] [--interval ${INTERVAL}]

Notice: If the metric you want to plot is calculated in the eval stage, you need to add the flag --mode eval. If you
perform evaluation with an interval of ${INTERVAL}, you need to add the args --interval ${INTERVAL}.
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Examples:

• Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --
→˓legend loss_cls

• Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls␣
→˓loss_bbox --out losses.pdf

• Compare the bbox mAP of two runs in the same figure.

# evaluate PartA2 and second on KITTI according to Car_3D_moderate_strict
python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/PartA2.log.json␣
→˓tools/logs/second.log.json --keys KITTI/Car_3D_moderate_strict --legend PartA2␣
→˓second --mode eval --interval 1
# evaluate PointPillars for car and 3 classes on KITTI according to Car_3D_moderate_
→˓strict
python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/pp-3class.log.
→˓json tools/logs/pp.log.json --keys KITTI/Car_3D_moderate_strict --legend pp-
→˓3class pp --mode eval --interval 2

You can also compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]

The output is expected to be like the following.

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter
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11.2 Model Serving

Note: This tool is still experimental now, only SECOND is supported to be served with TorchServe. We’ll support
more models in the future.

In order to serve an MMDetection3D model with TorchServe, you can follow the steps:

11.2.1 1. Convert the model from MMDetection3D to TorchServe

python tools/deployment/mmdet3d2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}

Note: ${MODEL_STORE} needs to be an absolute path to a folder.

11.2.2 2. Build mmdet3d-serve docker image

docker build -t mmdet3d-serve:latest docker/serve/

11.2.3 3. Run mmdet3d-serve

Check the official docs for running TorchServe with docker.

In order to run it on the GPU, you need to install nvidia-docker. You can omit the --gpus argument in order to run on
the CPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet3d-serve:latest

Read the docs about the Inference (8080), Management (8081) and Metrics (8082) APis

11.2.4 4. Test deployment

You can use test_torchserver.py to compare result of torchserver and pytorch.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_
→˓FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}]

Example:

python tools/deployment/test_torchserver.py demo/data/kitti/kitti_000008.bin configs/
→˓second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_
→˓kitti-3d-car_20200620_230238-393f000c.pth second
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11.3 Model Complexity

You can use tools/analysis_tools/get_flops.py in MMDetection3D, a script adapted from flops-
counter.pytorch, to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the results like this.

==============================
Input shape: (40000, 4)
Flops: 5.78 GFLOPs
Params: 953.83 k
==============================

Note: This tool is still experimental and we do not guarantee that the number is absolutely correct. You may well use
the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

1. FLOPs are related to the input shape while parameters are not. The default input shape is (1, 40000, 4).

2. Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.
get_model_complexity_info() for details.

3. We currently only support FLOPs calculation of single-stage models with single-modality input (point cloud or
image). We will support two-stage and multi-modality models in the future.

11.4 Model Conversion

11.4.1 RegNet model to MMDetection

tools/model_converters/regnet2mmdet.py convert keys in pycls pretrained RegNet models to MMDetection
style.

python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]

11.4.2 Detectron ResNet to Pytorch

tools/detectron2pytorch.py in MMDetection could convert keys in the original detectron pretrained ResNet mod-
els to PyTorch style.

python tools/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]
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11.4.3 Prepare a model for publishing

tools/model_converters/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to

1. convert model weights to CPU tensors

2. delete the optimizer states and

3. compute the hash of the checkpoint file and append the hash id to the filename.

python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_
→˓rcnn_r50_fpn_1x_20190801.pth

The final output filename will be faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth.

11.5 Dataset Conversion

tools/dataset_converters/ contains tools for converting datasets to other formats. Most of them convert datasets
to pickle based info files, like kitti, nuscenes and lyft. Waymo converter is used to reorganize waymo raw data like
KITTI style. Users could refer to them for our approach to converting data format. It is also convenient to modify them
to use as scripts like nuImages converter.

To convert the nuImages dataset into COCO format, please use the command below:

python -u tools/dataset_converters/nuimage_converter.py --data-root ${DATA_ROOT} --
→˓version ${VERSIONS} \

--out-dir ${OUT_DIR} --nproc ${NUM_
→˓WORKERS} --extra-tag ${TAG}

• --data-root: the root of the dataset, defaults to ./data/nuimages.

• --version: the version of the dataset, defaults to v1.0-mini. To get the full dataset, please use --version
v1.0-train v1.0-val v1.0-mini

• --out-dir: the output directory of annotations and semantic masks, defaults to ./data/nuimages/
annotations/.

• --nproc: number of workers for data preparation, defaults to 4. Larger number could reduce the preparation
time as images are processed in parallel.

• --extra-tag: extra tag of the annotations, defaults to nuimages. This can be used to separate different anno-
tations processed in different time for study.

More details could be referred to the doc for dataset preparation and README for nuImages dataset.
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11.6 Miscellaneous

11.6.1 Print the entire config

tools/misc/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
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TWELVE

VISUALIZATION

MMDetection3D provides a Det3DLocalVisualizer to visualize and store the state of the model during training and
testing, as well as results, with the following features.

1. Support the basic drawing interface for multi-modality data and multi-task.

2. Support multiple backends such as local, TensorBoard, to write training status such as loss, lr, or performance
evaluation metrics and to a specified single or multiple backends.

3. Support ground truth visualization on multimodal data, and cross-modal visualization of 3D detection results.

12.1 Basic Drawing Interface

Inherited from DetLocalVisualizer, Det3DLocalVisualizer provides an interface for drawing common objects
on 2D images, such as drawing detection boxes, points, text, lines, circles, polygons, and binary masks. More details
about 2D drawing can refer to the visualization documentation in MMDetection. Here we introduce the 3D drawing
interface:

12.1.1 Drawing point cloud on the image

We support drawing point cloud on the image by using draw_points_on_image.

import mmcv
import numpy as np
from mmengine import load

from mmdet3d.visualization import Det3DLocalVisualizer

info_file = load('demo/data/kitti/000008.pkl')
points = np.fromfile('demo/data/kitti/000008.bin', dtype=np.float32)
points = points.reshape(-1, 4)[:, :3]
lidar2img = np.array(info_file['data_list'][0]['images']['CAM2']['lidar2img'], dtype=np.
→˓float32)

visualizer = Det3DLocalVisualizer()
img = mmcv.imread('demo/data/kitti/000008.png')
img = mmcv.imconvert(img, 'bgr', 'rgb')
visualizer.set_image(img)
visualizer.draw_points_on_image(points, lidar2img)
visualizer.show()
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../../resources/points_on_image.png

12.1.2 Drawing 3D Boxes on Point Cloud

We support drawing 3D boxes on point cloud by using draw_bboxes_3d.

import torch

from mmdet3d.visualization import Det3DLocalVisualizer
from mmdet3d.structures import LiDARInstance3DBoxes

points = np.fromfile('tests/data/kitti/training/velodyne/000000.bin', dtype=np.float32)
points = points.reshape(-1, 4)
visualizer = Det3DLocalVisualizer()
# set point cloud in visualizer
visualizer.set_points(points)
bboxes_3d = LiDARInstance3DBoxes(torch.tensor(

[[8.7314, -1.8559, -1.5997, 1.2000, 0.4800, 1.8900,
-1.5808]])),

# Draw 3D bboxes
visualizer.draw_bboxes_3d(bboxes_3d)
visualizer.show()

../../resources/pcd.png

12.1.3 Drawing Projected 3D Boxes on Image

We support drawing projected 3D boxes on image by using draw_proj_bboxes_3d.

import mmcv
import numpy as np
from mmengine import load

from mmdet3d.visualization import Det3DLocalVisualizer
from mmdet3d.structures import CameraInstance3DBoxes

info_file = load('demo/data/kitti/000008.pkl')
cam2img = np.array(info_file['data_list'][0]['images']['CAM2']['cam2img'], dtype=np.
→˓float32)
bboxes_3d = []
for instance in info_file['data_list'][0]['instances']:

bboxes_3d.append(instance['bbox_3d'])
(continues on next page)
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(continued from previous page)

gt_bboxes_3d = np.array(bboxes_3d, dtype=np.float32)
gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d)
input_meta = {'cam2img': cam2img}

visualizer = Det3DLocalVisualizer()

img = mmcv.imread('demo/data/kitti/000008.png')
img = mmcv.imconvert(img, 'bgr', 'rgb')
visualizer.set_image(img)
# project 3D bboxes to image
visualizer.draw_proj_bboxes_3d(gt_bboxes_3d, input_meta)
visualizer.show()

../../resources/mono3d.png

12.1.4 Drawing BEV Boxes

We support drawing BEV boxes by using draw_bev_bboxes.

import numpy as np
from mmengine import load

from mmdet3d.visualization import Det3DLocalVisualizer
from mmdet3d.structures import CameraInstance3DBoxes

info_file = load('demo/data/kitti/000008.pkl')
bboxes_3d = []
for instance in info_file['data_list'][0]['instances']:

bboxes_3d.append(instance['bbox_3d'])
gt_bboxes_3d = np.array(bboxes_3d, dtype=np.float32)
gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d)

visualizer = Det3DLocalVisualizer()
# set bev image in visualizer
visualizer.set_bev_image()
# draw bev bboxes
visualizer.draw_bev_bboxes(gt_bboxes_3d, edge_colors='orange')
visualizer.show()
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12.1.5 Drawing 3D Semantic Mask

We support draw segmentation mask via per-point colorization by using draw_seg_mask.

import torch

from mmdet3d.visualization import Det3DLocalVisualizer

points = np.fromfile('tests/data/s3dis/points/Area_1_office_2.bin', dtype=np.float32)
points = points.reshape(-1, 3)
visualizer = Det3DLocalVisualizer()
mask = np.random.rand(points.shape[0], 3)
points_with_mask = np.concatenate((points, mask), axis=-1)
# Draw 3D points with mask
visualizer.draw_seg_mask(points_with_mask)
visualizer.show()

12.2 Results

To see the prediction results of trained models, you can run the following command:

python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --show --show-dir ${SHOW_DIR}

After running this command, plotted results including input data and the output of networks visualized on the input
will be saved in ${SHOW_DIR}.

After running this command, you will obtain the input data, the output of networks and ground-truth labels visualized
on the input (e.g. ***_gt.png and ***_pred.png in multi-modality detection task and vision-based detection task)
in ${SHOW_DIR}. When show is enabled, Open3D will be used to visualize the results online. If you are running test
in remote server without GUI, the online visualization is not supported. You can download the results.pkl from the
remote server, and visualize the prediction results offline in your local machine.

To visualize the results with Open3D backend offline, you can run the following command:

python tools/misc/visualize_results.py ${CONFIG_FILE} --result ${RESULTS_PATH} --show-
→˓dir ${SHOW_DIR}

This allows the inference and results generation to be done in remote server and the users can open them on their host
with GUI.

12.3 Dataset

We also provide scripts to visualize the dataset without inference. You can use tools/misc/browse_dataset.py
to show loaded data and ground-truth online and save them on the disk. Currently we support single-modality 3D
detection and 3D segmentation on all the datasets, multi-modality 3D detection on KITTI and SUN RGB-D, as well as
monocular 3D detection on nuScenes. To browse the KITTI dataset, you can run the following command:

python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task␣
→˓det --output-dir ${OUTPUT_DIR}
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Notice: Once specifying --output-dir, the images of views specified by users will be saved when pressing _ESC_
in open3d window.

To verify the data consistency and the effect of data augmentation, you can also add --aug flag to visualize the data
after data augmentation using the command as below:

python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task␣
→˓lidar_det --aug --output-dir ${OUTPUT_DIR}

If you also want to show 2D images with 3D bounding boxes projected onto them, you need to find a config that
supports multi-modality data loading, and then change the --task args to multi-modality_det. An example is
showed below:

python tools/misc/browse_dataset.py configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_
→˓80e_kitti-3d-3class.py --task multi-modality_det --output-dir ${OUTPUT_DIR}

You can simply browse different datasets using different configs, e.g. visualizing the ScanNet dataset in 3D semantic
segmentation task:

python tools/misc/browse_dataset.py configs/_base_/datasets/scannet_seg-3d-20class.py --
→˓task lidar_seg --output-dir ${OUTPUT_DIR} --online

And browsing the nuScenes dataset in monocular 3D detection task:
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python tools/misc/browse_dataset.py configs/_base_/datasets/nus-mono3d.py --task mono_
→˓det --output-dir ${OUTPUT_DIR} --online
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13.1 KITTI Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for KITTI dataset.

13.1.1 Prepare dataset

You can download KITTI 3D detection data HERE and unzip all zip files. Besides, the road planes could be downloaded
from HERE, which are optional for data augmentation during training for better performance. The road planes are
generated by AVOD, you can see more details HERE.

Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
mmdet3d
tools
configs
data

kitti
ImageSets
testing

calib
image_2
velodyne

training
calib
image_2
label_2
velodyne
planes (optional)
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Create KITTI dataset

To create KITTI point cloud data, we load the raw point cloud data and generate the relevant annotations including
object labels and bounding boxes. We also generate all single training objects’ point cloud in KITTI dataset and save
them as .bin files in data/kitti/kitti_gt_database. Meanwhile, .pkl info files are also generated for training
or validation. Subsequently, create KITTI data by running:

mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/test.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/train.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/val.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/
→˓ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/
→˓ImageSets/trainval.txt

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --
→˓extra-tag kitti --with-plane

Note that if your local disk does not have enough space for saving converted data, you can change the --out-dir to
anywhere else, and you need to remove the --with-plane flag if planes are not prepared.

The folder structure after processing should be as below

kitti
ImageSets

test.txt
train.txt
trainval.txt
val.txt

testing
calib
image_2
velodyne
velodyne_reduced

training
calib
image_2
label_2
velodyne
velodyne_reduced
planes (optional)

kitti_gt_database
xxxxx.bin

kitti_infos_train.pkl
kitti_infos_val.pkl
kitti_dbinfos_train.pkl

(continues on next page)
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(continued from previous page)

kitti_infos_test.pkl
kitti_infos_trainval.pkl

• kitti_gt_database/xxxxx.bin: point cloud data included in each 3D bounding box of the training dataset.

• kitti_infos_train.pkl: training dataset, a dict contains two keys: metainfo and data_list. metainfo
contains the basic information for the dataset itself, such as categories, dataset and info_version, while
data_list is a list of dict, each dict (hereinafter referred to as info) contains all the detailed information of
single sample as follows:

– info[‘sample_idx’]: The index of this sample in the whole dataset.

– info[‘images’]: Information of images captured by multiple cameras. A dict contains five keys including:
CAM0, CAM1, CAM2, CAM3, R0_rect.

∗ info[‘images’][‘R0_rect’]: Rectifying rotation matrix with shape (4, 4).

∗ info[‘images’][‘CAM2’]: Include some information about the CAM2 camera sensor.

· info[‘images’][‘CAM2’][‘img_path’]: The filename of the image.

· info[‘images’][‘CAM2’][‘height’]: The height of the image.

· info[‘images’][‘CAM2’][‘width’]: The width of the image.

· info[‘images’][‘CAM2’][‘cam2img’]: Transformation matrix from camera to image with shape
(4, 4).

· info[‘images’][‘CAM2’][‘lidar2cam’]: Transformation matrix from lidar to camera with shape (4,
4).

· info[‘images’][‘CAM2’][‘lidar2img’]: Transformation matrix from lidar to image with shape (4,
4).

– info[‘lidar_points’]: A dict containing all the information related to the lidar points.

∗ info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

∗ info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

∗ info[‘lidar_points’][‘Tr_velo_to_cam’]: Transformation from Velodyne coordinate to camera coordi-
nate with shape (4, 4).

∗ info[‘lidar_points’][‘Tr_imu_to_velo’]: Transformation from IMU coordinate to Velodyne coordinate
with shape (4, 4).

– info[‘instances’]: It is a list of dict. Each dict contains all annotation information of single instance. For
the i-th instance:

∗ info[‘instances’][i][‘bbox’]: List of 4 numbers representing the 2D bounding box of the instance, in
(x1, y1, x2, y2) order.

∗ info[‘instances’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding box of the instance,
in (x, y, z, l, h, w, yaw) order.

∗ info[‘instances’][i][‘bbox_label’]: An int indicate the 2D label of instance and the -1 indicating ignore.

∗ info[‘instances’][i][‘bbox_label_3d’]: An int indicate the 3D label of instance and the -1 indicating
ignore.

∗ info[‘instances’][i][‘depth’]: Projected center depth of the 3D bounding box with respect to the image
plane.

∗ info[‘instances’][i][‘num_lidar_pts’]: The number of LiDAR points in the 3D bounding box.
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∗ info[‘instances’][i][‘center_2d’]: Projected 2D center of the 3D bounding box.

∗ info[‘instances’][i][‘difficulty’]: KITTI difficulty: ‘Easy’, ‘Moderate’, ‘Hard’.

∗ info[‘instances’][i][‘truncated’]: Float from 0 (non-truncated) to 1 (truncated), where truncated refers
to the object leaving image boundaries.

∗ info[‘instances’][i][‘occluded’]: Integer (0,1,2,3) indicating occlusion state: 0 = fully visible, 1 = partly
occluded, 2 = largely occluded, 3 = unknown.

∗ info[‘instances’][i][‘group_ids’]: Used for multi-part object.

– info[‘plane’](optional): Road level information.

Please refer to kitti_converter.py and update_infos_to_v2.py for more details.

13.1.2 Train pipeline

A typical train pipeline of 3D detection on KITTI is as below:

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(

type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),

dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]

• Data augmentation:

– ObjectNoise: apply noise to each GT objects in the scene.

– RandomFlip3D: randomly flip input point cloud horizontally or vertically.

– GlobalRotScaleTrans: rotate input point cloud.
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13.1.3 Evaluation

An example to evaluate PointPillars with 8 GPUs with kitti metrics is as follows:

bash tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-
→˓3class.py work_dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8

13.1.4 Metrics

KITTI evaluates 3D object detection performance using mean Average Precision (mAP) and Average Orientation Sim-
ilarity (AOS), Please refer to its official website and original paper for more details.

We also adopt this approach for evaluation on KITTI. An example of printed evaluation results is as follows:

Car AP@0.70, 0.70, 0.70:
bbox AP:97.9252, 89.6183, 88.1564
bev AP:90.4196, 87.9491, 85.1700
3d AP:88.3891, 77.1624, 74.4654
aos AP:97.70, 89.11, 87.38
Car AP@0.70, 0.50, 0.50:
bbox AP:97.9252, 89.6183, 88.1564
bev AP:98.3509, 90.2042, 89.6102
3d AP:98.2800, 90.1480, 89.4736
aos AP:97.70, 89.11, 87.38

13.1.5 Testing and make a submission

An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard is as follows:

• First, you need to modify the test_dataloader and test_evaluator dict in your config file, just like:

data_root = 'data/kitti/'
test_dataloader = dict(

dataset=dict(
ann_file='kitti_infos_test.pkl',
load_eval_anns=False,
data_prefix=dict(pts='testing/velodyne_reduced')))

test_evaluator = dict(
ann_file=data_root + 'kitti_infos_test.pkl',
format_only=True,
pklfile_prefix='results/kitti-3class/kitti_results',
submission_prefix='results/kitti-3class/kitti_results')

• And then, you can run the test script.

./tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-
→˓3class.py work_dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8

After generating results/kitti-3class/kitti_results/xxxxx.txt files, you can submit these files to KITTI
benchmark. Please refer to the KITTI official website for more details.
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13.2 NuScenes Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for nuScenes dataset.

13.2.1 Before Preparation

You can download nuScenes 3D detection data HERE and unzip all zip files.

Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
mmdet3d
tools
configs
data

nuscenes
maps
samples
sweeps
v1.0-test

| | v1.0-trainval

13.2.2 Dataset Preparation

We typically need to organize the useful data information with a .pkl file in a specific style. To prepare these files for
nuScenes, run the following command:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/
→˓nuscenes --extra-tag nuscenes

The folder structure after processing should be as below.

mmdetection3d
mmdet3d
tools
configs
data

nuscenes
maps
samples
sweeps
v1.0-test

| | v1.0-trainval
nuscenes_database
nuscenes_infos_train.pkl
nuscenes_infos_val.pkl
nuscenes_infos_test.pkl
nuscenes_dbinfos_train.pkl

• nuscenes_database/xxxxx.bin: point cloud data included in each 3D bounding box of the training dataset
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• nuscenes_infos_train.pkl: training dataset, a dict contains two keys: metainfo and data_list.
metainfo contains the basic information for the dataset itself, such as categories, dataset and
info_version, while data_list is a list of dict, each dict (hereinafter referred to as info) contains all the
detailed information of single sample as follows:

– info[‘sample_idx’]: The index of this sample in the whole dataset.

– info[‘token’]: Sample data token.

– info[‘timestamp’]: Timestamp of the sample data.

– info[‘lidar_points’]: A dict containing all the information related to the lidar points.

∗ info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

∗ info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

∗ info[‘lidar_points’][‘lidar2ego’]: The transformation matrix from this lidar sensor to ego vehicle. (4x4
list)

∗ info[‘lidar_points’][‘ego2global’]: The transformation matrix from the ego vehicle to global coordi-
nates. (4x4 list)

– info[‘lidar_sweeps’]: A list contains sweeps information (The intermediate lidar frames without annota-
tions)

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘data_path’]: The lidar data path of i-th sweep.

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘lidar2ego’]: The transformation matrix from this lidar sensor
to ego vehicle. (4x4 list)

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘ego2global’]: The transformation matrix from the ego vehicle
to global coordinates. (4x4 list)

∗ info[‘lidar_sweeps’][i][‘lidar2sensor’]: The transformation matrix from the main lidar sensor to the
current sensor (for collecting the sweep data). (4x4 list)

∗ info[‘lidar_sweeps’][i][‘timestamp’]: Timestamp of the sweep data.

∗ info[‘lidar_sweeps’][i][‘sample_data_token’]: The sweep sample data token.

– info[‘images’]: A dict contains six keys corresponding to each camera: 'CAM_FRONT',
'CAM_FRONT_RIGHT', 'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'.
Each dict contains all data information related to corresponding camera.

∗ info[‘images’][‘CAM_XXX’][‘img_path’]: The filename of the image.

∗ info[‘images’][‘CAM_XXX’][‘cam2img’]: The transformation matrix recording the intrinsic param-
eters when projecting 3D points to each image plane. (3x3 list)

∗ info[‘images’][‘CAM_XXX’][‘sample_data_token’]: Sample data token of image.

∗ info[‘images’][‘CAM_XXX’][‘timestamp’]: Timestamp of the image.

∗ info[‘images’][‘CAM_XXX’][‘cam2ego’]: The transformation matrix from this camera sensor to ego
vehicle. (4x4 list)

∗ info[‘images’][‘CAM_XXX’][‘lidar2cam’]: The transformation matrix from lidar sensor to this cam-
era. (4x4 list)

– info[‘instances’]: It is a list of dict. Each dict contains all annotation information of single instance. For
the i-th instance:

∗ info[‘instances’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding box of the instance,
in (x, y, z, l, w, h, yaw) order.
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∗ info[‘instances’][i][‘bbox_label_3d’]: A int indicate the label of instance and the -1 indicate ignore.

∗ info[‘instances’][i][‘velocity’]: Velocities of 3D bounding boxes (no vertical measurements due to
inaccuracy), a list has shape (2.).

∗ info[‘instances’][i][‘num_lidar_pts’]: Number of lidar points included in each 3D bounding box.

∗ info[‘instances’][i][‘num_radar_pts’]: Number of radar points included in each 3D bounding box.

∗ info[‘instances’][i][‘bbox_3d_isvalid’]: Whether each bounding box is valid. In general, we only take
the 3D boxes that include at least one lidar or radar point as valid boxes.

– info[‘cam_instances’]: It is a dict containing keys 'CAM_FRONT', 'CAM_FRONT_RIGHT',
'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'. For vision-based 3D
object detection task, we split 3D annotations of the whole scenes according to the camera they belong to.
For the i-th instance:

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_label’]: Label of instance.

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_label_3d’]: Label of instance.

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘bbox’]: 2D bounding box annotation (exterior rectangle of
the projected 3D box), a list arrange as [x1, y1, x2, y2].

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘center_2d’]: Projected center location on the image, a list
has shape (2,), .

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘depth’]: The depth of projected center.

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘velocity’]: Velocities of 3D bounding boxes (no vertical
measurements due to inaccuracy), a list has shape (2,).

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘attr_label’]: The attr label of instance. We maintain a default
attribute collection and mapping for attribute classification.

∗ info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding
box of the instance, in (x, y, z, l, h, w, yaw) order.

Note:

1. The differences between bbox_3d in instances and that in cam_instances. Both bbox_3d have been con-
verted to MMDet3D coordinate system, but bboxes_3d in instances is in LiDAR coordinate format and
bboxes_3d in cam_instances is in Camera coordinate format. Mind the difference between them in 3D Box
representation (‘l, w, h’ and ‘l, h, w’).

2. Here we only explain the data recorded in the training info files. The same applies to validation and testing set
(the .pkl file of test set does not contains instances and cam_instances).

The core function to get nuscenes_infos_xxx.pkl is _fill_trainval_infos. Please refer to nuscenes_converter.py for
more details.

13.2.3 Training pipeline

LiDAR-Based Methods

A typical training pipeline of LiDAR-based 3D detection (including multi-modality methods) on nuScenes is as below.

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='LIDAR',

(continues on next page)
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(continued from previous page)

load_dim=5,
use_dim=5),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]

Compared to general cases, nuScenes has a specific 'LoadPointsFromMultiSweeps' pipeline to load point clouds
from consecutive frames. This is a common practice used in this setting. Please refer to the nuScenes original paper
for more details. The default use_dim in 'LoadPointsFromMultiSweeps' is [0, 1, 2, 4], where the first 3
dimensions refer to point coordinates and the last refers to timestamp differences. Intensity is not used by default due
to its yielded noise when concatenating the points from different frames.

Vision-Based Methods

A typical training pipeline of image-based 3D detection on nuScenes is as below.

train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(

type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),

dict(type='mmdet.Resize', scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(

type='Pack3DDetInputs',
keys=[

'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'

]),
]

It follows the general pipeline of 2D detection while differs in some details:
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• It uses monocular pipelines to load images, which includes additional required information like camera intrinsics.

• It needs to load 3D annotations.

• Some data augmentation techniques need to be adjusted, such as RandomFlip3D. Currently we do not support
more augmentation methods, because how to transfer and apply other techniques is still under explored.

13.2.4 Evaluation

An example to evaluate PointPillars with 8 GPUs with nuScenes metrics is as follows.

bash ./tools/dist_test.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-
→˓3d.py checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.
→˓pth 8

13.2.5 Metrics

NuScenes proposes a comprehensive metric, namely nuScenes detection score (NDS), to evaluate different methods and
set up the benchmark. It consists of mean Average Precision (mAP), Average Translation Error (ATE), Average Scale
Error (ASE), Average Orientation Error (AOE), Average Velocity Error (AVE) and Average Attribute Error (AAE).
Please refer to its official website for more details.

We also adopt this approach for evaluation on nuScenes. An example of printed evaluation results is as follows:

mAP: 0.3197
mATE: 0.7595
mASE: 0.2700
mAOE: 0.4918
mAVE: 1.3307
mAAE: 0.1724
NDS: 0.3905
Eval time: 170.8s

Per-class results:
Object Class AP ATE ASE AOE AVE AAE
car 0.503 0.577 0.152 0.111 2.096 0.136
truck 0.223 0.857 0.224 0.220 1.389 0.179
bus 0.294 0.855 0.204 0.190 2.689 0.283
trailer 0.081 1.094 0.243 0.553 0.742 0.167
construction_vehicle 0.058 1.017 0.450 1.019 0.137 0.341
pedestrian 0.392 0.687 0.284 0.694 0.876 0.158
motorcycle 0.317 0.737 0.265 0.580 2.033 0.104
bicycle 0.308 0.704 0.299 0.892 0.683 0.010
traffic_cone 0.555 0.486 0.309 nan nan nan
barrier 0.466 0.581 0.269 0.169 nan nan
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13.2.6 Testing and make a submission

An example to test PointPillars on nuScenes with 8 GPUs and generate a submission to the leaderboard is as follows.

You should modify the jsonfile_prefix in the test_evaluator of corresponding configuration. For exam-
ple, adding test_evaluator = dict(type='NuScenesMetric', jsonfile_prefix='work_dirs/pp-nus/
results_eval.json') or using --cfg-options "test_evaluator.jsonfile_prefix=work_dirs/pp-nus/
results_eval.json) after the test command.

./tools/dist_test.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py␣
→˓work_dirs/pp-nus/latest.pth 8 --cfg-options 'test_evaluator.jsonfile_prefix=work_dirs/
→˓pp-nus/results_eval'

Note that the testing info should be changed to that for testing set instead of validation set here.

After generating the work_dirs/pp-nus/results_eval.json, you can compress it and submit it to nuScenes
benchmark. Please refer to the nuScenes official website for more information.

We can also visualize the prediction results with our developed visualization tools. Please refer to the visualization doc
for more details.

13.2.7 Notes

Transformation between NuScenesBox and our CameraInstanceBoxes.

In general, the main difference of NuScenesBox and our CameraInstanceBoxes is mainly reflected in the yaw def-
inition. NuScenesBox defines the rotation with a quaternion or three Euler angles while ours only defines one yaw
angle due to the practical scenario. It requires us to add some additional rotations manually in the pre-processing and
post-processing, such as here.

In addition, please note that the definition of corners and locations are detached in the NuScenesBox. For example, in
monocular 3D detection, the definition of the box location is in its camera coordinate (see its official illustration for car
setup), which is consistent with ours. In contrast, its corners are defined with the convention “x points forward, y to the
left, z up”. It results in different philosophy of dimension and rotation definitions from our CameraInstanceBoxes.
An example to remove similar hacks is PR #744. The same problem also exists in the LiDAR system. To deal with
them, we typically add some transformation in the pre-processing and post-processing to guarantee the box will be in
our coordinate system during the entire training and inference procedure.

13.3 Lyft Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for Lyft dataset.

13.3.1 Before Preparation

You can download Lyft 3D detection data HERE and unzip all zip files.

Like the general way to prepare a dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.

The folder structure should be organized as follows before our processing.

mmdetection3d
mmdet3d
tools

(continues on next page)

13.3. Lyft Dataset for 3D Object Detection 77

https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/configs/_base_/datasets/nus-3d.py#L132
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://mmdetection3d.readthedocs.io/en/latest/useful_tools.html#visualization
https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L673
https://www.nuscenes.org/nuscenes#data-collection
https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/cam_box3d.py
https://github.com/nutonomy/nuscenes-devkit/blob/02e9200218977193a1058dd7234f935834378319/python-sdk/nuscenes/utils/data_classes.py#L527
https://github.com/open-mmlab/mmdetection3d/pull/744
https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data


mmcv Documentation, Release 1.1.0
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configs
data

lyft
v1.01-train

v1.01-train (train_data)
lidar (train_lidar)
images (train_images)
maps (train_maps)

v1.01-test
v1.01-test (test_data)
lidar (test_lidar)
images (test_images)
maps (test_maps)

train.txt
val.txt
test.txt
sample_submission.csv

Here v1.01-train and v1.01-test contain the metafiles which are similar to those of nuScenes. .txt files contain
the data split information. Lyft does not have an official split for training and validation set, so we provide a split
considering the number of objects from different categories in different scenes. sample_submission.csv is the base
file for submission on the Kaggle evaluation server. Note that we follow the original folder names for clear organization.
Please rename the raw folders as shown above.

13.3.2 Dataset Preparation

The way to organize Lyft dataset is similar to nuScenes. We also generate the .pkl files which share almost the same
structure. Next, we will mainly focus on the difference between these two datasets. For a more detailed explanation of
the info structure, please refer to nuScenes tutorial.

To prepare info files for Lyft, run the following commands:

python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-
→˓tag lyft --version v1.01
python tools/dataset_converters/lyft_data_fixer.py --version v1.01 --root-folder ./data/
→˓lyft

Note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the discussion
here for more details.

The folder structure after processing should be as below.

mmdetection3d
mmdet3d
tools
configs
data

lyft
v1.01-train

v1.01-train (train_data)
lidar (train_lidar)
images (train_images)

(continues on next page)
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maps (train_maps)
v1.01-test

v1.01-test (test_data)
lidar (test_lidar)
images (test_images)
maps (test_maps)

train.txt
val.txt
test.txt
sample_submission.csv
lyft_infos_train.pkl
lyft_infos_val.pkl
lyft_infos_test.pkl

• lyft_infos_train.pkl: training dataset, a dict contains two keys: metainfo and data_list. metainfo
contains the basic information for the dataset itself, such as categories, dataset and info_version, while
data_list is a list of dict, each dict (hereinafter referred to as info) contains all the detailed information of
single sample as follows:

– info[‘sample_idx’]: The index of this sample in the whole dataset.

– info[‘token’]: Sample data token.

– info[‘timestamp’]: Timestamp of the sample data.

– info[‘lidar_points’]: A dict containing all the information related to the lidar points.

∗ info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

∗ info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

∗ info[‘lidar_points’][‘lidar2ego’]: The transformation matrix from this lidar sensor to ego vehicle. (4x4
list)

∗ info[‘lidar_points’][‘ego2global’]: The transformation matrix from the ego vehicle to global coordi-
nates. (4x4 list)

– info[‘lidar_sweeps’]: A list contains sweeps information (The intermediate lidar frames without annota-
tions).

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘data_path’]: The lidar data path of i-th sweep.

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘lidar2ego’]: The transformation matrix from this lidar sensor
to ego vehicle in i-th sweep timestamp

∗ info[‘lidar_sweeps’][i][‘lidar_points’][‘ego2global’]: The transformation matrix from the ego vehicle
in i-th sweep timestamp to global coordinates. (4x4 list)

∗ info[‘lidar_sweeps’][i][‘lidar2sensor’]: The transformation matrix from the keyframe lidar to the i-th
frame lidar. (4x4 list)

∗ info[‘lidar_sweeps’][i][‘timestamp’]: Timestamp of the sweep data.

∗ info[‘lidar_sweeps’][i][‘sample_data_token’]: The sweep sample data token.

– info[‘images’]: A dict contains six keys corresponding to each camera: 'CAM_FRONT',
'CAM_FRONT_RIGHT', 'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'.
Each dict contains all data information related to corresponding camera.

∗ info[‘images’][‘CAM_XXX’][‘img_path’]: The filename of the image.
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∗ info[‘images’][‘CAM_XXX’][‘cam2img’]: The transformation matrix recording the intrinsic param-
eters when projecting 3D points to each image plane. (3x3 list)

∗ info[‘images’][‘CAM_XXX’][‘sample_data_token’]: Sample data token of image.

∗ info[‘images’][‘CAM_XXX’][‘timestamp’]: Timestamp of the image.

∗ info[‘images’][‘CAM_XXX’][‘cam2ego’]: The transformation matrix from this camera sensor to ego
vehicle. (4x4 list)

∗ info[‘images’][‘CAM_XXX’][‘lidar2cam’]: The transformation matrix from lidar sensor to this cam-
era. (4x4 list)

– info[‘instances’]: It is a list of dict. Each dict contains all annotation information of single instance. For
the i-th instance:

∗ info[‘instances’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding box in lidar coordi-
nate system of the instance, in (x, y, z, l, w, h, yaw) order.

∗ info[‘instances’][i][‘bbox_label_3d’]: A int starting from 0 indicates the label of instance, while the
-1 indicates ignore class.

∗ info[‘instances’][i][‘bbox_3d_isvalid’]: Whether each bounding box is valid. In general, we only take
the 3D boxes that include at least one lidar or radar point as valid boxes.

Next, we will elaborate on the difference compared to nuScenes in terms of the details recorded in these info files.

• Without lyft_database/xxxxx.bin: This folder and .bin files are not extracted on the Lyft dataset due to
the negligible effect of ground-truth sampling in the experiments.

• lyft_infos_train.pkl:

– Without info[‘instances’][i][‘velocity’]: There is no velocity measurement on Lyft.

– Without info[‘instances’][i][‘num_lidar_pts’] and info[‘instances’][‘num_radar_pts’]

Here we only explain the data recorded in the training info files. The same applies to the validation set and test set
(without instances).

Please refer to lyft_converter.py for more details about the structure of lyft_infos_xxx.pkl.

13.3.3 Training pipeline

LiDAR-Based Methods

A typical training pipeline of LiDAR-based 3D detection (including multi-modality methods) on Lyft is almost the
same as nuScenes as below.

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5),

dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10),

dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(

type='GlobalRotScaleTrans',
(continues on next page)
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rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]

Similar to nuScenes, models on Lyft also need the 'LoadPointsFromMultiSweeps' pipeline to load point clouds
from consecutive frames. In addition, considering the intensity of LiDAR points collected by Lyft is invalid, we also
set the use_dim in 'LoadPointsFromMultiSweeps' to [0, 1, 2, 4] by default, where the first 3 dimensions refer
to point coordinates, and the last refers to timestamp differences.

13.3.4 Evaluation

An example to evaluate PointPillars with 8 GPUs with Lyft metrics is as follows:

bash ./tools/dist_test.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-
→˓3d.py checkpoints/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818-fc6904c3.
→˓pth 8

13.3.5 Metrics

Lyft proposes a more strict metric for evaluating the predicted 3D bounding boxes. The basic criteria to judge whether
a predicted box is positive or not is the same as KITTI, i.e. the 3D Intersection over Union (IoU). However, it adopts a
way similar to COCO to compute the mean average precision (mAP) – compute the average precision under different
thresholds of 3D IoU from 0.5-0.95. Actually, overlap more than 0.7 3D IoU is a quite strict criterion for 3D detection
methods, so the overall performance seems a little low. The imbalance of annotations for different categories is another
important reason for the finally lower results compared to other datasets. Please refer to its official website for more
details about the definition of this metric.

We employ this official method for evaluation on Lyft. An example of printed evaluation results is as follows:

+mAPs@0.5:0.95------+--------------+
| class | mAP@0.5:0.95 |
+-------------------+--------------+
| animal | 0.0 |
| bicycle | 0.099 |
| bus | 0.177 |
| car | 0.422 |
| emergency_vehicle | 0.0 |
| motorcycle | 0.049 |
| other_vehicle | 0.359 |
| pedestrian | 0.066 |
| truck | 0.176 |
| Overall | 0.15 |
+-------------------+--------------+
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13.3.6 Testing and make a submission

An example to test PointPillars on Lyft with 8 GPUs and generate a submission to the leaderboard is as follows.

./tools/dist_test.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d.py␣
→˓work_dirs/pp-lyft/latest.pth 8 --cfg-options test_evaluator.jsonfile_prefix=work_dirs/
→˓pp-lyft/results_challenge test_evaluator.csv_savepath=results/pp-lyft/results_
→˓challenge.csv

After generating the work_dirs/pp-lyft/results_challenge.csv, you can submit it to the Kaggle evaluation
server. Please refer to the official website for more information.

We can also visualize the prediction results with our developed visualization tools. Please refer to the visualization doc
for more details.

13.4 Waymo Dataset

This page provides specific tutorials about the usage of MMDetection3D for Waymo dataset.

13.4.1 Prepare dataset

Before preparing Waymo dataset, if you only installed requirements in requirements/build.txt and
requirements/runtime.txt before, please install the official package for this dataset at first by running

# tf 2.1.0.
pip install waymo-open-dataset-tf-2-1-0==1.2.0
# tf 2.0.0
# pip install waymo-open-dataset-tf-2-0-0==1.2.0
# tf 1.15.0
# pip install waymo-open-dataset-tf-1-15-0==1.2.0

or

pip install -r requirements/optional.txt

Like the general way to prepare dataset, it is recommended to symlink the dataset root to $MMDETECTION3D/data.
Due to the original Waymo data format is based on tfrecord, we need to preprocess the raw data for convenient usage
in the training and evaluation procedure. Our approach is to convert them into KITTI format.

The folder structure should be organized as follows before our processing.

mmdetection3d
mmdet3d
tools
configs
data

waymo
waymo_format

training
validation
testing
gt.bin

(continues on next page)
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kitti_format
ImageSets

You can download Waymo open dataset V1.2 HERE and its data split HERE. Then put tfrecord files into corre-
sponding folders in data/waymo/waymo_format/ and put the data split txt files into data/waymo/kitti_format/
ImageSets. Download ground truth bin files for validation set HERE and put it into data/waymo/waymo_format/.
A tip is that you can use gsutil to download the large-scale dataset with commands. You can take this tool as an
example for more details. Subsequently, prepare Waymo data by running

python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --
→˓workers 128 --extra-tag waymo

Note that if your local disk does not have enough space for saving converted data, you can change the --out-dir to
anywhere else. Just remember to create folders and prepare data there in advance and link them back to data/waymo/
kitti_format after the data conversion.

After the data conversion, the folder structure and info files should be organized as below.

mmdetection3d
mmdet3d
tools
configs
data

waymo
waymo_format

training
validation
testing
gt.bin

kitti_format
ImageSets
training

calib
image_0
image_1
image_2
image_3
image_4
label_0
label_1
label_2
label_3
label_4
label_all
pose
velodyne

testing
(the same as training)

waymo_gt_database
waymo_infos_trainval.pkl
waymo_infos_train.pkl
waymo_infos_val.pkl

(continues on next page)
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waymo_infos_test.pkl
waymo_dbinfos_train.pkl

Here because there are several cameras, we store the corresponding image and labels that can be projected to that camera
respectively and save pose for further usage of consecutive frames point clouds. We use a coding way {a}{bbb}{ccc}
to name the data for each frame, where a is the prefix for different split (0 for training, 1 for validation and 2 for testing),
bbb for segment index and ccc for frame index. You can easily locate the required frame according to this naming rule.
We gather the data for training and validation together as KITTI and store the indices for different set in the ImageSet
files.

13.4.2 Training

Considering there are many similar frames in the original dataset, we can basically use a subset to train our model
primarily. In our preliminary baselines, we load one frame every five frames, and thanks to our hyper parameters
settings and data augmentation, we obtain a better result compared with the performance given in the original dataset
paper. For more details about the configuration and performance, please refer to README.md in the configs/
pointpillars/. A more complete benchmark based on other settings and methods is coming soon.

13.4.3 Evaluation

For evaluation on Waymo, please follow the instruction to build the binary file compute_detection_metrics_main
for metrics computation and put it into mmdet3d/core/evaluation/waymo_utils/. Basically, you can follow the
commands below to install bazel and build the file.

# download the code and enter the base directory
git clone https://github.com/waymo-research/waymo-open-dataset.git waymo-od
# git clone https://github.com/Abyssaledge/waymo-open-dataset-master waymo-od # if you␣
→˓want to use faster multi-thread version.
cd waymo-od
git checkout remotes/origin/master

# use the Bazel build system
sudo apt-get install --assume-yes pkg-config zip g++ zlib1g-dev unzip python3 python3-pip
BAZEL_VERSION=3.1.0
wget https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel-$
→˓{BAZEL_VERSION}-installer-linux-x86_64.sh
sudo bash bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh
sudo apt install build-essential

# configure .bazelrc
./configure.sh
# delete previous bazel outputs and reset internal caches
bazel clean

bazel build waymo_open_dataset/metrics/tools/compute_detection_metrics_main
cp bazel-bin/waymo_open_dataset/metrics/tools/compute_detection_metrics_main ../
→˓mmdetection3d/mmdet3d/evaluation/functional/waymo_utils/

Then you can evaluate your models on Waymo. An example to evaluate PointPillars on Waymo with 8 GPUs with
Waymo metrics is as follows.
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./tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-
→˓3d-car.py checkpoints/hv_pointpillars_secfpn_sbn-2x16_2x_waymo-3d-car_latest.pth

pklfile_prefix should be set in test_evaluator of configuration if the bin file is needed to be generated, so you
can add --cfg-options "test_evaluator.pklfile_prefix=xxxx" in the end of command if you want do it.

Notice:

1. Sometimes when using bazel to build compute_detection_metrics_main, an error 'round' is not a
member of 'std' may appear. We just need to remove the std:: before round in that file.

2. Considering it takes a little long time to evaluate once, we recommend to evaluate only once at the end of model
training.

3. To use TensorFlow with CUDA 9, it is recommended to compile it from source. Apart from official tutorials,
you can refer to this link for possibly suitable precompiled packages and useful information for compiling it from
source.

13.4.4 Testing and make a submission

An example to test PointPillars on Waymo with 8 GPUs, generate the bin files and make a submission to the leaderboard.

submission_prefix should be set in test_evaluator of configuration before you run the test command if you want
to generate the bin files and make a submission to the leaderboard..

After generating the bin file, you can simply build the binary file create_submission and use them to create a
submission file by following the instruction. Basically, here are some example commands.

cd ../waymo-od/
bazel build waymo_open_dataset/metrics/tools/create_submission
cp bazel-bin/waymo_open_dataset/metrics/tools/create_submission ../mmdetection3d/mmdet3d/
→˓core/evaluation/waymo_utils/
vim waymo_open_dataset/metrics/tools/submission.txtpb # set the metadata information
cp waymo_open_dataset/metrics/tools/submission.txtpb ../mmdetection3d/mmdet3d/evaluation/
→˓functional/waymo_utils/

cd ../mmdetection3d
# suppose the result bin is in `results/waymo-car/submission`
mmdet3d/core/evaluation/waymo_utils/create_submission --input_filenames='results/waymo-
→˓car/kitti_results_test.bin' --output_filename='results/waymo-car/submission/model' --
→˓submission_filename='mmdet3d/evaluation/functional/waymo_utils/submission.txtpb'

tar cvf results/waymo-car/submission/my_model.tar results/waymo-car/submission/my_model/
gzip results/waymo-car/submission/my_model.tar

For evaluation on the validation set with the eval server, you can also use the same way to generate a submission. Make
sure you change the fields in submission.txtpb before running the command above.
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13.5 SUN RGB-D for 3D Object Detection

13.5.1 Dataset preparation

For the overall process, please refer to the README page for SUN RGB-D.

Download SUN RGB-D data and toolbox

Download SUNRGBD data HERE. Then, move SUNRGBD.zip, SUNRGBDMeta2DBB_v2.mat,
SUNRGBDMeta3DBB_v2.mat and SUNRGBDtoolbox.zip to the OFFICIAL_SUNRGBD folder, unzip the zip files.

The directory structure before data preparation should be as below:

sunrgbd
README.md
matlab

extract_rgbd_data_v1.m
extract_rgbd_data_v2.m
extract_split.m

OFFICIAL_SUNRGBD
SUNRGBD
SUNRGBDMeta2DBB_v2.mat
SUNRGBDMeta3DBB_v2.mat
SUNRGBDtoolbox

Extract data and annotations for 3D detection from raw data

Extract SUN RGB-D annotation data from raw annotation data by running (this requires MATLAB installed on your
machine):

matlab -nosplash -nodesktop -r 'extract_split;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v2;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v1;quit;'

The main steps include:

• Extract train and val split.

• Extract data for 3D detection from raw data.

• Extract and format detection annotation from raw data.

The main component of extract_rgbd_data_v2.m which extracts point cloud data from depth map is as follows:

data = SUNRGBDMeta(imageId);
data.depthpath(1:16) = '';
data.depthpath = strcat('../OFFICIAL_SUNRGBD', data.depthpath);
data.rgbpath(1:16) = '';
data.rgbpath = strcat('../OFFICIAL_SUNRGBD', data.rgbpath);

% extract point cloud from depth map
[rgb,points3d,depthInpaint,imsize]=read3dPoints(data);
rgb(isnan(points3d(:,1)),:) = [];

(continues on next page)
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points3d(isnan(points3d(:,1)),:) = [];
points3d_rgb = [points3d, rgb];

% MAT files are 3x smaller than TXT files. In Python we can use
% scipy.io.loadmat('xxx.mat')['points3d_rgb'] to load the data.
mat_filename = strcat(num2str(imageId,'%06d'), '.mat');
txt_filename = strcat(num2str(imageId,'%06d'), '.txt');
% save point cloud data
parsave(strcat(depth_folder, mat_filename), points3d_rgb);

The main component of extract_rgbd_data_v1.m which extracts annotation is as follows:

% Write 2D and 3D box label
data2d = data;
fid = fopen(strcat(det_label_folder, txt_filename), 'w');
for j = 1:length(data.groundtruth3DBB)

centroid = data.groundtruth3DBB(j).centroid; % 3D bbox center
classname = data.groundtruth3DBB(j).classname; % class name
orientation = data.groundtruth3DBB(j).orientation; % 3D bbox orientation
coeffs = abs(data.groundtruth3DBB(j).coeffs); % 3D bbox size
box2d = data2d.groundtruth2DBB(j).gtBb2D; % 2D bbox
fprintf(fid, '%s %d %d %d %d %f %f %f %f %f %f %f %f\n', classname, box2d(1),␣

→˓box2d(2), box2d(3), box2d(4), centroid(1), centroid(2), centroid(3), coeffs(1),␣
→˓coeffs(2), coeffs(3), orientation(1), orientation(2));
end
fclose(fid);

The above two scripts call functions such as read3dPoints from the toolbox provided by SUN RGB-D.

The directory structure after extraction should be as follows.

sunrgbd
README.md
matlab

extract_rgbd_data_v1.m
extract_rgbd_data_v2.m
extract_split.m

OFFICIAL_SUNRGBD
SUNRGBD
SUNRGBDMeta2DBB_v2.mat
SUNRGBDMeta3DBB_v2.mat
SUNRGBDtoolbox

sunrgbd_trainval
calib
depth
image
label
label_v1
seg_label
train_data_idx.txt
val_data_idx.txt

Under each following folder there are overall 5285 train files and 5050 val files:
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• calib: Camera calibration information in .txt

• depth: Point cloud saved in .mat (xyz+rgb)

• image: Image data in .jpg

• label: Detection annotation data in .txt (version 2)

• label_v1: Detection annotation data in .txt (version 1)

• seg_label: Segmentation annotation data in .txt

Currently, we use v1 data for training and testing, so the version 2 labels are unused.

Create dataset

Please run the command below to create the dataset.

python tools/create_data.py sunrgbd --root-path ./data/sunrgbd \
--out-dir ./data/sunrgbd --extra-tag sunrgbd

or (if in a slurm environment)

bash tools/create_data.sh <job_name> sunrgbd

The above point cloud data are further saved in .bin format. Meanwhile .pkl info files are also generated for saving
annotation and metadata.

The directory structure after processing should be as follows.

sunrgbd
README.md
matlab

...
OFFICIAL_SUNRGBD

...
sunrgbd_trainval

...
points
sunrgbd_infos_train.pkl
sunrgbd_infos_val.pkl

• points/xxxxxx.bin: The point cloud data after downsample.

• sunrgbd_infos_train.pkl: The train data infos, the detailed info of each scene is as follows:

– info[‘lidar_points’]: A dict containing all information related to the the lidar points.

∗ info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

∗ info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

– info[‘images’]: A dict containing all information relate to the image data.

∗ info[‘images’][‘CAM0’][‘img_path’]: The filename of the image.

∗ info[‘images’][‘CAM0’][‘depth2img’]: Transformation matrix from depth to image with shape (4, 4).

∗ info[‘images’][‘CAM0’][‘height’]: The height of image.

∗ info[‘images’][‘CAM0’][‘width’]: The width of image.
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– info[‘instances’]: A list of dict contains all the annotations of this frame. Each dict corresponds to annota-
tions of single instance. For the i-th instance:

∗ info[‘instances’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding box in depth coordi-
nate system.

∗ info[‘instances’][i][‘bbox’]: List of 4 numbers representing the 2D bounding box of the instance, in
(x1, y1, x2, y2) order.

∗ info[‘instances’][i][‘bbox_label_3d’]: An int indicates the 3D label of instance and the -1 indicates
ignore class.

∗ info[‘instances’][i][‘bbox_label’]: An int indicates the 2D label of instance and the -1 indicates ignore
class.

• sunrgbd_infos_val.pkl: The val data infos, which shares the same format as sunrgbd_infos_train.pkl.

13.5.2 Train pipeline

A typical train pipeline of SUN RGB-D for point cloud only 3D detection is as follows.

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),

dict(type='LoadAnnotations3D'),
dict(

type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,

),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.523599, 0.523599],
scale_ratio_range=[0.85, 1.15],
shift_height=True),

dict(type='PointSample', num_points=20000),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]

Data augmentation for point clouds:

• RandomFlip3D: randomly flip the input point cloud horizontally or vertically.

• GlobalRotScaleTrans: rotate the input point cloud, usually in the range of [-30, 30] (degrees) for SUN RGB-
D; then scale the input point cloud, usually in the range of [0.85, 1.15] for SUN RGB-D; finally translate the
input point cloud, usually by 0 for SUN RGB-D (which means no translation).

• PointSample: downsample the input point cloud.

A typical train pipeline of SUN RGB-D for multi-modality (point cloud and image) 3D detection is as follows.
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train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),

dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations3D'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1333, 600), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.0),
dict(type='Pad', size_divisor=32),
dict(

type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,

),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.523599, 0.523599],
scale_ratio_range=[0.85, 1.15],
shift_height=True),

dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d','img', 'gt_bboxes', 'gt_bboxes_

→˓labels'])
]

Data augmentation for images:

• Resize: resize the input image, keep_ratio=True means the ratio of the image is kept unchanged.

• RandomFlip: randomly flip the input image.

The image augmentation functions are implemented in MMDetection.

13.5.3 Metrics

Same as ScanNet, typically mean Average Precision (mAP) is used for evaluation on SUN RGB-D, e.g. mAP@0.25 and
mAP@0.5. In detail, a generic function to compute precision and recall for 3D object detection for multiple classes is
called. Please refer to indoor_eval for more details.

Since SUN RGB-D consists of image data, detection on image data is also feasible. For instance, in ImVoteNet, we
first train an image detector, and we also use mAP for evaluation, e.g. mAP@0.5. We use the eval_map function from
MMDetection to calculate mAP.
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13.6 ScanNet for 3D Object Detection

13.6.1 Dataset preparation

For the overall process, please refer to the README page for ScanNet.

Export ScanNet point cloud data

By exporting ScanNet data, we load the raw point cloud data and generate the relevant annotations including semantic
labels, instance labels and ground truth bounding boxes.

python batch_load_scannet_data.py

The directory structure before data preparation should be as below

mmdetection3d
mmdet3d
tools
configs
data

scannet
meta_data
scans

scenexxxx_xx
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md

Under folder scans there are overall 1201 train and 312 validation folders in which raw point cloud data and relevant
annotations are saved. For instance, under folder scene0001_01 the files are as below:

• scene0001_01_vh_clean_2.ply: Mesh file storing coordinates and colors of each vertex. The mesh’s vertices
are taken as raw point cloud data.

• scene0001_01.aggregation.json: Aggregation file including object ID, segments ID and label.

• scene0001_01_vh_clean_2.0.010000.segs.json: Segmentation file including segments ID and vertex.

• scene0001_01.txt: Meta file including axis-aligned matrix, etc.

• scene0001_01_vh_clean_2.labels.ply: Annotation file containing the category of each vertex.

Export ScanNet data by running python batch_load_scannet_data.py. The main steps include:

• Export original files to point cloud, instance label, semantic label and bounding box file.

• Downsample raw point cloud and filter invalid classes.

• Save point cloud data and relevant annotation files.

And the core function export in load_scannet_data.py is as follows:

def export(mesh_file,
agg_file,
seg_file,
meta_file,

(continues on next page)
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label_map_file,
output_file=None,
test_mode=False):

# label map file: ./data/scannet/meta_data/scannetv2-labels.combined.tsv
# the various label standards in the label map file, e.g. 'nyu40id'
label_map = scannet_utils.read_label_mapping(

label_map_file, label_from='raw_category', label_to='nyu40id')
# load raw point cloud data, 6-dims feature: XYZRGB
mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)

# Load scene axis alignment matrix: a 4x4 transformation matrix
# transform raw points in sensor coordinate system to a coordinate system
# which is axis-aligned with the length/width of the room
lines = open(meta_file).readlines()
# test set data doesn't have align_matrix
axis_align_matrix = np.eye(4)
for line in lines:

if 'axisAlignment' in line:
axis_align_matrix = [

float(x)
for x in line.rstrip().strip('axisAlignment = ').split(' ')

]
break

axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))

# perform global alignment of mesh vertices
pts = np.ones((mesh_vertices.shape[0], 4))
# raw point cloud in homogeneous coordinates, each row: [x, y, z, 1]
pts[:, 0:3] = mesh_vertices[:, 0:3]
# transform raw mesh vertices to aligned mesh vertices
pts = np.dot(pts, axis_align_matrix.transpose()) # Nx4
aligned_mesh_vertices = np.concatenate([pts[:, 0:3], mesh_vertices[:, 3:]],

axis=1)

# Load semantic and instance labels
if not test_mode:

# each object has one semantic label and consists of several segments
object_id_to_segs, label_to_segs = read_aggregation(agg_file)
# many points may belong to the same segment
seg_to_verts, num_verts = read_segmentation(seg_file)
label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
object_id_to_label_id = {}
for label, segs in label_to_segs.items():

label_id = label_map[label]
for seg in segs:

verts = seg_to_verts[seg]
# each point has one semantic label
label_ids[verts] = label_id

instance_ids = np.zeros(
shape=(num_verts), dtype=np.uint32) # 0: unannotated

for object_id, segs in object_id_to_segs.items():

(continues on next page)

92 Chapter 13. Datasets



mmcv Documentation, Release 1.1.0

(continued from previous page)

for seg in segs:
verts = seg_to_verts[seg]
# object_id is 1-indexed, i.e. 1,2,3,.,,,.NUM_INSTANCES
# each point belongs to one object
instance_ids[verts] = object_id
if object_id not in object_id_to_label_id:

object_id_to_label_id[object_id] = label_ids[verts][0]
# bbox format is [x, y, z, x_size, y_size, z_size, label_id]
# [x, y, z] is gravity center of bbox, [x_size, y_size, z_size] is axis-aligned
# [label_id] is semantic label id in 'nyu40id' standard
# Note: since 3D bbox is axis-aligned, the yaw is 0.
unaligned_bboxes = extract_bbox(mesh_vertices, object_id_to_segs,

object_id_to_label_id, instance_ids)
aligned_bboxes = extract_bbox(aligned_mesh_vertices, object_id_to_segs,

object_id_to_label_id, instance_ids)
...

return mesh_vertices, label_ids, instance_ids, unaligned_bboxes, \
aligned_bboxes, object_id_to_label_id, axis_align_matrix

After exporting each scan, the raw point cloud could be downsampled, e.g. to 50000, if the number of points is too
large (the raw point cloud won’t be downsampled if it’s also used in 3D semantic segmentation task). In addition,
invalid semantic labels outside of nyu40id standard or optional DONOT CARE classes should be filtered. Finally, the
point cloud data, semantic labels, instance labels and ground truth bounding boxes should be saved in .npy files.

Export ScanNet RGB data (optional)

By exporting ScanNet RGB data, for each scene we load a set of RGB images with corresponding 4x4 pose matrices,
and a single 4x4 camera intrinsic matrix. Note, that this step is optional and can be skipped if multi-view detection is
not planned to use.

python extract_posed_images.py

Each of 1201 train, 312 validation and 100 test scenes contains a single .sens file. For instance, for scene 0001_01
we have data/scannet/scans/scene0001_01/0001_01.sens. For this scene all images and poses are extracted
to data/scannet/posed_images/scene0001_01. Specifically, there will be 300 image files xxxxx.jpg, 300 cam-
era pose files xxxxx.txt and a single intrinsic.txt file. Typically, single scene contains several thousand images.
By default, we extract only 300 of them with resulting space occupation of <100 Gb. To extract more images, use
--max-images-per-scene parameter.

Create dataset

python tools/create_data.py scannet --root-path ./data/scannet \
--out-dir ./data/scannet --extra-tag scannet

The above exported point cloud file, semantic label file and instance label file are further saved in .bin format. Mean-
while .pkl info files are also generated for train or validation. The core function process_single_scene of getting
data infos is as follows.
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def process_single_scene(sample_idx):

# save point cloud, instance label and semantic label in .bin file respectively, get␣
→˓info['pts_path'], info['pts_instance_mask_path'] and info['pts_semantic_mask_path']

...

# get annotations
if has_label:

annotations = {}
# box is of shape [k, 6 + class]
aligned_box_label = self.get_aligned_box_label(sample_idx)
unaligned_box_label = self.get_unaligned_box_label(sample_idx)
annotations['gt_num'] = aligned_box_label.shape[0]
if annotations['gt_num'] != 0:

aligned_box = aligned_box_label[:, :-1] # k, 6
unaligned_box = unaligned_box_label[:, :-1]
classes = aligned_box_label[:, -1] # k
annotations['name'] = np.array([

self.label2cat[self.cat_ids2class[classes[i]]]
for i in range(annotations['gt_num'])

])
# default names are given to aligned bbox for compatibility
# we also save unaligned bbox info with marked names
annotations['location'] = aligned_box[:, :3]
annotations['dimensions'] = aligned_box[:, 3:6]
annotations['gt_boxes_upright_depth'] = aligned_box
annotations['unaligned_location'] = unaligned_box[:, :3]
annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
annotations[

'unaligned_gt_boxes_upright_depth'] = unaligned_box
annotations['index'] = np.arange(

annotations['gt_num'], dtype=np.int32)
annotations['class'] = np.array([

self.cat_ids2class[classes[i]]
for i in range(annotations['gt_num'])

])
axis_align_matrix = self.get_axis_align_matrix(sample_idx)
annotations['axis_align_matrix'] = axis_align_matrix # 4x4
info['annos'] = annotations

return info

The directory structure after process should be as below:

scannet
meta_data
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md
scans
scans_test
scannet_instance_data
points

(continues on next page)
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xxxxx.bin
instance_mask

xxxxx.bin
semantic_mask

xxxxx.bin
seg_info

train_label_weight.npy
train_resampled_scene_idxs.npy
val_label_weight.npy
val_resampled_scene_idxs.npy

posed_images
scenexxxx_xx

xxxxxx.txt
xxxxxx.jpg
intrinsic.txt

scannet_infos_train.pkl
scannet_infos_val.pkl
scannet_infos_test.pkl

• points/xxxxx.bin: The axis-unaligned point cloud data after downsample. Since ScanNet 3D detection
task takes axis-aligned point clouds as input, while ScanNet 3D semantic segmentation task takes unaligned
points, we choose to store unaligned points and their axis-align transform matrix. Note: the points would be
axis-aligned in pre-processing pipeline GlobalAlignment of 3D detection task.

• instance_mask/xxxxx.bin: The instance label for each point, value range: [0, NUM_INSTANCES], 0: unan-
notated.

• semantic_mask/xxxxx.bin: The semantic label for each point, value range: [1, 40], i.e. nyu40id standard.
Note: the nyu40id ID will be mapped to train ID in train pipeline PointSegClassMapping.

• posed_images/scenexxxx_xx: The set of .jpg images with .txt 4x4 poses and the single .txt file with
camera intrinsic matrix.

• scannet_infos_train.pkl: The train data infos, the detailed info of each scan is as follows:

– info[‘lidar_points’]: A dict containing all information related to the lidar points.

∗ info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

∗ info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

∗ info[‘lidar_points’][‘axis_align_matrix’]: The transformation matrix to align the axis.

– info[‘pts_semantic_mask_path’]: The filename of the semantic mask annotation.

– info[‘pts_instance_mask_path’]: The filename of the instance mask annotation.

– info[‘instances’]: A list of dict contains all annotations, each dict contains all annotation information of
single instance. For the i-th instance:

∗ info[‘instances’][i][‘bbox_3d’]: List of 6 numbers representing the axis-aligned 3D bounding box of
the instance in depth coordinate system, in (x, y, z, l, w, h) order.

∗ info[‘instances’][i][‘bbox_label_3d’]: The label of each 3d bounding boxes.

• scannet_infos_val.pkl: The val data infos, which shares the same format as scannet_infos_train.pkl.

• scannet_infos_test.pkl: The test data infos, which almost shares the same format as
scannet_infos_train.pkl except for the lack of annotation.
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13.6.2 Training pipeline

A typical training pipeline of ScanNet for 3D detection is as follows.

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),

dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
with_mask_3d=True,
with_seg_3d=True),

dict(type='GlobalAlignment', rotation_axis=2),
dict(type='PointSegClassMapping'),
dict(type='PointSample', num_points=40000),
dict(

type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),

dict(
type='GlobalRotScaleTrans',
rot_range=[-0.087266, 0.087266],
scale_ratio_range=[1.0, 1.0],
shift_height=True),

dict(
type='Pack3DDetInputs',
keys=[

'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
'pts_instance_mask'

])
]

• GlobalAlignment: The previous point cloud would be axis-aligned using the axis-aligned matrix.

• PointSegClassMapping: Only the valid category IDs will be mapped to class label IDs like [0, 18) during
training.

• Data augmentation:

– PointSample: downsample the input point cloud.

– RandomFlip3D: randomly flip the input point cloud horizontally or vertically.

– GlobalRotScaleTrans: rotate the input point cloud, usually in the range of [-5, 5] (degrees) for ScanNet;
then scale the input point cloud, usually by 1.0 for ScanNet (which means no scaling); finally translate the
input point cloud, usually by 0 for ScanNet (which means no translation).
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13.6.3 Metrics

Typically mean Average Precision (mAP) is used for evaluation on ScanNet, e.g. mAP@0.25 and mAP@0.5. In detail, a
generic function to compute precision and recall for 3D object detection for multiple classes is called. Please refer to
indoor_eval for more details.

As introduced in section Export ScanNet data, all ground truth 3D bounding box are axis-aligned, i.e. the yaw
is zero. So the yaw target of network predicted 3D bounding box is also zero and axis-aligned 3D Non-Maximum
Suppression (NMS), which is regardless of rotation, is adopted during post-processing .

13.7 ScanNet for 3D Semantic Segmentation

13.7.1 Dataset preparation

The overall process is similar to ScanNet 3D detection task. Please refer to this section. Only a few differences and
additional information about the 3D semantic segmentation data will be listed below.

Export ScanNet data

Since ScanNet provides online benchmark for 3D semantic segmentation evaluation on the test set, we need to also
download the test scans and put it under scannet folder.

The directory structure before data preparation should be as below:

mmdetection3d
mmdet3d
tools
configs
data

scannet
meta_data
scans

scenexxxx_xx
scans_test

scenexxxx_xx
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md

Under folder scans_test there are 100 test folders in which only raw point cloud data and its meta file are saved. For
instance, under folder scene0707_00 the files are as below:

• scene0707_00_vh_clean_2.ply: Mesh file storing coordinates and colors of each vertex. The mesh’s vertices
are taken as raw point cloud data.

• scene0707_00.txt: Meta file including sensor parameters, etc. Note: different from data under scans, axis-
aligned matrix is not provided for test scans.

Export ScanNet data by running python batch_load_scannet_data.py. Note: only point cloud data will be saved
for test set scans because no annotations are provided.
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Create dataset

Similar to the 3D detection task, we create dataset by running python tools/create_data.py scannet
--root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet. The directory structure
after processing should be as below:

scannet
scannet_utils.py
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md
scans
scans_test
scannet_instance_data
points

xxxxx.bin
instance_mask

xxxxx.bin
semantic_mask

xxxxx.bin
seg_info

train_label_weight.npy
train_resampled_scene_idxs.npy
val_label_weight.npy
val_resampled_scene_idxs.npy

scannet_infos_train.pkl
scannet_infos_val.pkl
scannet_infos_test.pkl

• seg_info: The generated infos to support semantic segmentation model training.

– train_label_weight.npy: Weighting factor for each semantic class. Since the number of points in
different classes varies greatly, it’s a common practice to use label re-weighting to get a better performance.

– train_resampled_scene_idxs.npy: Re-sampling index for each scene. Different rooms will be sam-
pled multiple times according to their number of points to balance training data.

13.7.2 Training pipeline

A typical training pipeline of ScanNet for 3D semantic segmentation is as below:

train_pipeline = [
dict(

type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),

dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,

(continues on next page)
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with_mask_3d=False,
with_seg_3d=True),

dict(
type='PointSegClassMapping'),

dict(
type='IndoorPatchPointSample',
num_points=num_points,
block_size=1.5,
ignore_index=len(class_names),
use_normalized_coord=False,
enlarge_size=0.2,
min_unique_num=None),

dict(type='NormalizePointsColor', color_mean=None),
dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])

]

• PointSegClassMapping: Only the valid category ids will be mapped to class label ids like [0, 20) during
training. Other class ids will be converted to ignore_index which equals to 20.

• IndoorPatchPointSample: Crop a patch containing a fixed number of points from input point cloud.
block_size indicates the size of the cropped block, typically 1.5 for ScanNet.

• NormalizePointsColor: Normalize the RGB color values of input point cloud by dividing 255.

13.7.3 Metrics

Typically mean Intersection over Union (mIoU) is used for evaluation on ScanNet. In detail, we first compute IoU for
multiple classes and then average them to get mIoU, please refer to seg_eval.

13.7.4 Testing and Making a Submission

By default, our codebase evaluates semantic segmentation results on the validation set. If you would
like to test the model performance on the online benchmark, add --format-only flag in the evalu-
ation script and change ann_file=data_root + 'scannet_infos_val.pkl' to ann_file=data_root +
'scannet_infos_test.pkl' in the ScanNet dataset’s config. Remember to specify the txt_prefix as the directory
to save the testing results.

Taking PointNet++ (SSG) on ScanNet for example, the following command can be used to do inference on test set:

./tools/dist_test.sh configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-
→˓20class.py \

work_dirs/pointnet2_ssg/latest.pth --format-only \
--eval-options txt_prefix=work_dirs/pointnet2_ssg/test_submission

After generating the results, you can basically compress the folder and upload to the ScanNet evaluation server.
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13.8 S3DIS for 3D Semantic Segmentation

13.8.1 Dataset preparation

For the overall process, please refer to the README page for S3DIS.

Export S3DIS data

By exporting S3DIS data, we load the raw point cloud data and generate the relevant annotations including semantic
labels and instance labels.

The directory structure before exporting should be as below:

mmdetection3d
mmdet3d
tools
configs
data

s3dis
meta_data
Stanford3dDataset_v1.2_Aligned_Version

Area_1
conferenceRoom_1
office_1
...

Area_2
Area_3
Area_4
Area_5
Area_6

indoor3d_util.py
collect_indoor3d_data.py
README.md

Under folder Stanford3dDataset_v1.2_Aligned_Version, the rooms are spilted into 6 areas. We use 5 areas for
training and 1 for evaluation (typically Area_5). Under the directory of each area, there are folders in which raw point
cloud data and relevant annotations are saved. For instance, under folder Area_1/office_1 the files are as below:

• office_1.txt: A txt file storing coordinates and colors of each point in the raw point cloud data.

• Annotations/: This folder contains txt files for different object instances. Each txt file represents one instance,
e.g.

– chair_1.txt: A txt file storing raw point cloud data of one chair in this room.

If we concat all the txt files under Annotations/, we will get the same point cloud as denoted by office_1.
txt.

Export S3DIS data by running python collect_indoor3d_data.py. The main steps include:

• Export original txt files to point cloud, instance label and semantic label.

• Save point cloud data and relevant annotation files.

And the core function export in indoor3d_util.py is as follows:
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def export(anno_path, out_filename):
"""Convert original dataset files to points, instance mask and semantic
mask files. We aggregated all the points from each instance in the room.

Args:
anno_path (str): path to annotations. e.g. Area_1/office_2/Annotations/
out_filename (str): path to save collected points and labels.
file_format (str): txt or numpy, determines what file format to save.

Note:
the points are shifted before save, the most negative point is now

at origin.
"""
points_list = []
ins_idx = 1 # instance ids should be indexed from 1, so 0 is unannotated

# an example of `anno_path`: Area_1/office_1/Annotations
# which contains all object instances in this room as txt files
for f in glob.glob(osp.join(anno_path, '*.txt')):

# get class name of this instance
one_class = osp.basename(f).split('_')[0]
if one_class not in class_names: # some rooms have 'staris' class

one_class = 'clutter'
points = np.loadtxt(f)
labels = np.ones((points.shape[0], 1)) * class2label[one_class]
ins_labels = np.ones((points.shape[0], 1)) * ins_idx
ins_idx += 1
points_list.append(np.concatenate([points, labels, ins_labels], 1))

data_label = np.concatenate(points_list, 0) # [N, 8], (pts, rgb, sem, ins)
# align point cloud to the origin
xyz_min = np.amin(data_label, axis=0)[0:3]
data_label[:, 0:3] -= xyz_min

np.save(f'{out_filename}_point.npy', data_label[:, :6].astype(np.float32))
np.save(f'{out_filename}_sem_label.npy', data_label[:, 6].astype(np.int64))
np.save(f'{out_filename}_ins_label.npy', data_label[:, 7].astype(np.int64))

where we load and concatenate all the point cloud instances under Annotations/ to form raw point cloud and generate
semantic/instance labels. After exporting each room, the point cloud data, semantic labels and instance labels should
be saved in .npy files.
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Create dataset

python tools/create_data.py s3dis --root-path ./data/s3dis \
--out-dir ./data/s3dis --extra-tag s3dis

The above exported point cloud files, semantic label files and instance label files are further saved in .bin format.
Meanwhile .pkl info files are also generated for each area.

The directory structure after process should be as below:

s3dis
meta_data
indoor3d_util.py
collect_indoor3d_data.py
README.md
Stanford3dDataset_v1.2_Aligned_Version
s3dis_data
points

xxxxx.bin
instance_mask

xxxxx.bin
semantic_mask

xxxxx.bin
seg_info

Area_1_label_weight.npy
Area_1_resampled_scene_idxs.npy
Area_2_label_weight.npy
Area_2_resampled_scene_idxs.npy
Area_3_label_weight.npy
Area_3_resampled_scene_idxs.npy
Area_4_label_weight.npy
Area_4_resampled_scene_idxs.npy
Area_5_label_weight.npy
Area_5_resampled_scene_idxs.npy
Area_6_label_weight.npy
Area_6_resampled_scene_idxs.npy

s3dis_infos_Area_1.pkl
s3dis_infos_Area_2.pkl
s3dis_infos_Area_3.pkl
s3dis_infos_Area_4.pkl
s3dis_infos_Area_5.pkl
s3dis_infos_Area_6.pkl

• points/xxxxx.bin: The exported point cloud data.

• instance_mask/xxxxx.bin: The instance label for each point, value range: [0, ${NUM_INSTANCES}], 0:
unannotated.

• semantic_mask/xxxxx.bin: The semantic label for each point, value range: [0, 12].

• s3dis_infos_Area_1.pkl: Area 1 data infos, the detailed info of each room is as follows:

– info[‘point_cloud’]: {‘num_features’: 6, ‘lidar_idx’: sample_idx}.

– info[‘pts_path’]: The path of points/xxxxx.bin.

– info[‘pts_instance_mask_path’]: The path of instance_mask/xxxxx.bin.
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– info[‘pts_semantic_mask_path’]: The path of semantic_mask/xxxxx.bin.

• seg_info: The generated infos to support semantic segmentation model training.

– Area_1_label_weight.npy: Weighting factor for each semantic class. Since the number of points in
different classes varies greatly, it’s a common practice to use label re-weighting to get a better performance.

– Area_1_resampled_scene_idxs.npy: Re-sampling index for each scene. Different rooms will be sam-
pled multiple times according to their number of points to balance training data.

13.8.2 Training pipeline

A typical training pipeline of S3DIS for 3D semantic segmentation is as below.

class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')

num_points = 4096
train_pipeline = [

dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),

dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=False,
with_seg_3d=True),

dict(
type='PointSegClassMapping'),

dict(
type='IndoorPatchPointSample',
num_points=num_points,
block_size=1.0,
ignore_index=None,
use_normalized_coord=True,
enlarge_size=None,
min_unique_num=num_points // 4,
eps=0.0),

dict(type='NormalizePointsColor', color_mean=None),
dict(

type='GlobalRotScaleTrans',
rot_range=[-3.141592653589793, 3.141592653589793], # [-pi, pi]
scale_ratio_range=[0.8, 1.2],
translation_std=[0, 0, 0]),

dict(
type='RandomJitterPoints',
jitter_std=[0.01, 0.01, 0.01],
clip_range=[-0.05, 0.05]),

dict(type='RandomDropPointsColor', drop_ratio=0.2),
(continues on next page)
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dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]

• PointSegClassMapping: Only the valid category ids will be mapped to class label ids like [0, 13) during
training. Other class ids will be converted to ignore_index which equals to 13.

• IndoorPatchPointSample: Crop a patch containing a fixed number of points from input point cloud.
block_size indicates the size of the cropped block, typically 1.0 for S3DIS.

• NormalizePointsColor: Normalize the RGB color values of input point cloud by dividing 255.

• Data augmentation:

– GlobalRotScaleTrans: randomly rotate and scale input point cloud.

– RandomJitterPoints: randomly jitter point cloud by adding different noise vector to each point.

– RandomDropPointsColor: set the colors of point cloud to all zeros by a probability drop_ratio.

13.8.3 Metrics

Typically mean intersection over union (mIoU) is used for evaluation on S3DIS. In detail, we first compute IoU for
multiple classes and then average them to get mIoU, please refer to seg_eval.py.

As introduced in section Export S3DIS data, S3DIS trains on 5 areas and evaluates on the remaining 1 area. But
there are also other area split schemes in different papers. To enable flexible combination of train-val splits, we use
sub-dataset to represent one area, and concatenate them to form a larger training set. An example of training on area
1, 2, 3, 4, 6 and evaluating on area 5 is shown as below:

dataset_type = 'S3DISSegDataset'
data_root = './data/s3dis/'
class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',

'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
train_area = [1, 2, 3, 4, 6]
test_area = 5
train_dataloader = dict(

batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_files=[f's3dis_infos_Area_{i}.pkl' for i in train_area],
metainfo=metainfo,
data_prefix=data_prefix,
pipeline=train_pipeline,
modality=input_modality,
ignore_index=len(class_names),
scene_idxs=[

f'seg_info/Area_{i}_resampled_scene_idxs.npy' for i in train_area
],
test_mode=False))

test_dataloader = dict(
batch_size=1,

(continues on next page)
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num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_files=f's3dis_infos_Area_{test_area}.pkl',
metainfo=metainfo,
data_prefix=data_prefix,
pipeline=test_pipeline,
modality=input_modality,
ignore_index=len(class_names),
scene_idxs=f'seg_info/Area_{test_area}_resampled_scene_idxs.npy',
test_mode=True))

val_dataloader = test_dataloader

where we specify the areas used for training/validation by setting ann_files and scene_idxs with lists that include
corresponding paths. The train-val split can be simply modified via changing the train_area and test_area vari-
ables.
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CHAPTER

FOURTEEN

SUPPORTED TASKS

14.1 LiDAR-Based 3D Detection

LiDAR-based 3D detection is one of the most basic tasks supported in MMDetection3D. It expects the given model to
take any number of points with features collected by LiDAR as input, and predict the 3D bounding boxes and category
labels for each object of interest. Next, taking PointPillars on the KITTI dataset as an example, we will show how to
prepare data, train and test a model on a standard 3D detection benchmark, and how to visualize and validate the results.

14.1.1 Data Preparation

To begin with, we need to download the raw data and reorganize the data in a standard way presented in the doc for
data preparation. Note that for KITTI, we need extra .txt files for data splits.

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data informa-
tion with a .pkl file. So after getting all the raw data ready, we need to run the scripts provided in the create_data.py
for different datasets to generate data infos. For example, for KITTI we need to run:

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --
→˓extra-tag kitti

Afterwards, the related folder structure should be as follows:

mmdetection3d
mmdet3d
tools
configs
data

kitti
ImageSets
testing

calib
image_2
velodyne
velodyne_reduced

training
calib
image_2
label_2
velodyne
velodyne_reduced

(continues on next page)
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kitti_gt_database
kitti_infos_train.pkl
kitti_infos_trainval.pkl
kitti_infos_val.pkl
kitti_infos_test.pkl
kitti_dbinfos_train.pkl

14.1.2 Training

Then let us train a model with provided configs for PointPillars. You can basically follow the examples provided in
this tutorial when training with different GPU settings. Suppose we use 8 GPUs on a single machine with distributed
training:

./tools/dist_train.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-
→˓3class.py 8

Note that 8xb6 in the config name refers to the training is completed with 8 GPUs and 6 samples on each GPU. If your
customized setting is different from this, sometimes you need to adjust the learning rate accordingly. A basic rule can
be referred to here. We have supported --auto-scale-lr to enable automatically scaling LR.

14.1.3 Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of train_cfg =
dict(val_interval=xxx) in the config. We support official evaluation protocols for different datasets. For KITTI,
the model will be evaluated with mean average precision (mAP) with Intersection over Union (IoU) thresholds 0.5/0.7
for 3 categories respectively. The evaluation results will be printed in the command like:

Car AP@0.70, 0.70, 0.70:
bbox AP:98.1839, 89.7606, 88.7837
bev AP:89.6905, 87.4570, 85.4865
3d AP:87.4561, 76.7569, 74.1302
aos AP:97.70, 88.73, 87.34
Car AP@0.70, 0.50, 0.50:
bbox AP:98.1839, 89.7606, 88.7837
bev AP:98.4400, 90.1218, 89.6270
3d AP:98.3329, 90.0209, 89.4035
aos AP:97.70, 88.73, 87.34

In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the
following:

./tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-
→˓3class.py work_dirs/pointpillars/latest.pth 8
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14.1.4 Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark, you need to specify
the submission_prefix for corresponding evaluator, e.g., add test_evaluator = dict(type='KittiMetric',
ann_file=data_root + 'kitti_infos_test.pkl', format_only=True, pklfile_prefix='results/
kitti-3class/kitti_results', submission_prefix='results/kitti-3class/kitti_results') in the
configuration then you can get the results file. Please guarantee the data_prefix and ann_file in info for testing in
the config corresponds to the test set instead of validation set. After generating the results, you can basically compress
the folder and upload to the KITTI evaluation server.

14.1.5 Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that we can have an intuitive feeling of the detection
results predicted by our trained models. You can either set the --show option to visualize the detection results online
during evaluation, or using tools/misc/visualize_results.py for offline visualization. Besides, we also provide
scripts tools/misc/browse_dataset.py to visualize the dataset without inference. Please refer more details in the
doc for visualization.

14.2 Vision-Based 3D Detection

Vision-based 3D detection refers to the 3D detection solutions based on vision-only input, such as monocular, binocular,
and multi-view image based 3D detection. Currently, we only support monocular and multi-view 3D detection methods.
Other approaches should be also compatible with our framework and will be supported in the future.

It expects the given model to take any number of images as input, and predict the 3D bounding boxes and category
labels for each object of interest. Taking FCOS3D on the nuScenes dataset as an example, we will show how to prepare
data, train and test a model on a standard 3D detection benchmark, and how to visualize and validate the results.

14.2.1 Data Preparation

To begin with, we need to download the raw data and reorganize the data in a standard way presented in the doc for
data preparation.

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data
information with a .pkl or .json file. So after getting all the raw data ready, we need to run the scripts provided in the
create_data.py for different datasets to generate data infos. For example, for nuScenes we need to run:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/
→˓nuscenes --extra-tag nuscenes

Afterwards, the related folder structure should be as follows:

mmdetection3d
mmdet3d
tools
configs
data

nuscenes
maps
samples
sweeps

(continues on next page)
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v1.0-test
| | v1.0-trainval

nuscenes_database
nuscenes_infos_train.pkl
nuscenes_infos_trainval.pkl
nuscenes_infos_val.pkl
nuscenes_infos_test.pkl
nuscenes_dbinfos_train.pkl

14.2.2 Training

Then let us train a model with provided configs for FCOS3D. The basic script is the same as other models. You can
basically follow the examples provided in this tutorial when training with different GPU settings. Suppose we use 8
GPUs on a single machine with distributed training:

./tools/dist_train.sh configs/fcos3d/fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-
→˓mono3d.py 8

Note that 8xb2 in the config name refers to the training is completed with 8 GPUs and 2 data samples on each GPU.
If your customized setting is different from this, you should add --auto-scale-lr to enable automatically scaling
learning rate. A basic rule can be referred to here.

We can also achieve better performance with finetuned FCOS3D by running:

./tools/dist_train.sh configs/fcos3d/fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-
→˓mono3d_finetune.py 8

After training a baseline model with the previous script, please remember to modify the path here correspondingly.

14.2.3 Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of train_cfg =
dict(val_interval=xxx) in the config.

We support official evaluation protocols for different datasets. Due to the output format is the same as 3D detection
based on other modalities, the evaluation methods are also the same.

For nuScenes, the model will be evaluated with distance-based mean AP (mAP) and NuScenes Detection Score (NDS)
for 10 categories respectively. The evaluation results will be printed in the command like:

mAP: 0.3197
mATE: 0.7595
mASE: 0.2700
mAOE: 0.4918
mAVE: 1.3307
mAAE: 0.1724
NDS: 0.3905
Eval time: 170.8s

Per-class results:
Object Class AP ATE ASE AOE AVE AAE
car 0.503 0.577 0.152 0.111 2.096 0.136

(continues on next page)
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truck 0.223 0.857 0.224 0.220 1.389 0.179
bus 0.294 0.855 0.204 0.190 2.689 0.283
trailer 0.081 1.094 0.243 0.553 0.742 0.167
construction_vehicle 0.058 1.017 0.450 1.019 0.137 0.341
pedestrian 0.392 0.687 0.284 0.694 0.876 0.158
motorcycle 0.317 0.737 0.265 0.580 2.033 0.104
bicycle 0.308 0.704 0.299 0.892 0.683 0.010
traffic_cone 0.555 0.486 0.309 nan nan nan
barrier 0.466 0.581 0.269 0.169 nan nan

In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the
following:

./tools/dist_test.sh configs/fcos3d/fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d.
→˓py work_dirs/fcos3d/latest.pth 8

14.2.4 Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark,
you just need to specify the jsonfile_prefix for corresponding evaluator, e.g., add test_evaluator =
dict(type='NuscenesMetric', jsonfile_prefix=work_dirs/fcos3d/test_submission) in the configu-
ration then you can get the results file.

Please guarantee the data_prefix and ann_file in info for testing in the config corresponds to the test set instead
of validation set.

After generating the results, you can basically compress the folder and upload to the evalAI evaluation server for
nuScenes 3D detection challenge.

14.2.5 Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that we can have an intuitive feeling of
the detection results predicted by our trained models. You can either set the --eval-options 'show=True'
'out_dir=${SHOW_DIR}' option to visualize the detection results online during evaluation, or using tools/misc/
visualize_results.py for offline visualization.

Besides, we also provide scripts tools/misc/browse_dataset.py to visualize the dataset without inference. Please
refer more details in the doc for visualization.

Note that currently we only support the visualization on images for vision-only methods. The visualization in the
perspective view and bird-eye-view (BEV) will be integrated in the future.

14.3 LiDAR-Based 3D Semantic Segmentation

LiDAR-based 3D semantic segmentation is one of the most basic tasks supported in MMDetection3D. It expects the
given model to take any number of points with features collected by LiDAR as input, and predict the semantic labels for
each input point. Next, taking PointNet++ (SSG) on the ScanNet dataset as an example, we will show how to prepare
data, train and test a model on a standard 3D semantic segmentation benchmark, and how to visualize and validate the
results.
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14.3.1 Data Preparation

To begin with, we need to download the raw data from ScanNet’s official website.

Due to different ways of organizing the raw data in different datasets, we typically need to collect the useful data
information with a .pkl or .json file.

So after getting all the raw data ready, we can follow the instructions presented in ScanNet README doc to generate
data infos.

Afterwards, the related folder structure should be as follows:

mmdetection3d
mmdet3d
tools
configs
data

scannet
scannet_utils.py
batch_load_scannet_data.py
load_scannet_data.py
scannet_utils.py
README.md
scans
scans_test
scannet_instance_data
points
instance_mask
semantic_mask
seg_info

train_label_weight.npy
train_resampled_scene_idxs.npy
val_label_weight.npy
val_resampled_scene_idxs.npy

scannet_infos_train.pkl
scannet_infos_val.pkl
scannet_infos_test.pkl

14.3.2 Training

Then let us train a model with provided configs for PointNet++ (SSG). You can basically follow this tutorial for sample
scripts when training with different GPU settings. Suppose we use 2 GPUs on a single machine with distributed
training:

./tools/dist_train.sh configs/pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py 2

Note that 2xb16 in the config name refers to the training is completed with 2 GPUs and 16 samples on each GPU. If
your customized setting is different from this, sometimes you need to adjust the learning rate accordingly. A basic rule
can be referred to here.
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14.3.3 Quantitative Evaluation

During training, the model checkpoints will be evaluated regularly according to the setting of train_cfg =
dict(val_interval=xxx) in the config. We support official evaluation protocols for different datasets. For ScanNet,
the model will be evaluated with mean Intersection over Union (mIoU) over all 20 categories. The evaluation results
will be printed in the command like:

+---------+--------+--------+---------+--------+--------+--------+--------+--------+-----
→˓---+-----------+---------+---------+--------+---------+--------------+----------------
→˓+--------+--------+---------+----------------+--------+--------+---------+
| classes | wall | floor | cabinet | bed | chair | sofa | table | door |␣
→˓window | bookshelf | picture | counter | desk | curtain | refrigerator |␣
→˓showercurtrain | toilet | sink | bathtub | otherfurniture | miou | acc | acc_
→˓cls |
+---------+--------+--------+---------+--------+--------+--------+--------+--------+-----
→˓---+-----------+---------+---------+--------+---------+--------------+----------------
→˓+--------+--------+---------+----------------+--------+--------+---------+
| results | 0.7257 | 0.9373 | 0.4625 | 0.6613 | 0.7707 | 0.5562 | 0.5864 | 0.4010 | 0.
→˓4558 | 0.7011 | 0.2500 | 0.4645 | 0.4540 | 0.5399 | 0.2802 | 0.3488 ␣
→˓ | 0.7359 | 0.4971 | 0.6922 | 0.3681 | 0.5444 | 0.8118 | 0.6695 |
+---------+--------+--------+---------+--------+--------+--------+--------+--------+-----
→˓---+-----------+---------+---------+--------+---------+--------------+----------------
→˓+--------+--------+---------+----------------+--------+--------+---------+

In addition, you can also evaluate a specific model checkpoint after training is finished. Simply run scripts like the
following:

./tools/dist_test.sh configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-
→˓20class.py work_dirs/pointnet2_ssg/latest.pth 8

14.3.4 Testing and Making a Submission

If you would like to only conduct inference or test the model performance on the online benchmark, you should change
ann_file='scannet_infos_val.pkl' to ann_file='scannet_infos_test.pkl' in the ScanNet dataset’s con-
fig. Remember to specify the submission_prefix in the test_evaluator, e.g., adding test_evaluator
= dict(type='SegMetric', submission_prefix=work_dirs/pointnet2_ssg/test_submission) or just
add --cfg-options test_evaluator.submission_prefix=work_dirs/pointnet2_ssg/test_submission
in the end of command. After generating the results, you can basically compress the folder and upload to the ScanNet
evaluation server.

14.3.5 Qualitative Validation

MMDetection3D also provides versatile tools for visualization such that you can use tools/misc/
visualize_results.py with results pkl file for offline visualization of add --show in the end of test command
to do the online visualization. Besides, we also provide scripts tools/misc/browse_dataset.py to visualize the
dataset without inference. Please refer more details in the doc for visualization.
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CHAPTER

FIFTEEN

CUSTOMIZATION

15.1 Customize Datasets

In this note, you will know how to train and test predefined models with customized datasets.

The basic steps are as below:

1. Prepare data

2. Prepare a config

3. Train, test and inference models on the customized dataset

15.1.1 Data Preparation

The ideal situation is that we can reorganize the customized raw data and convert the annotation format into KITTI style.
However, considering some calibration files and 3D annotations in KITTI format are difficult to obtain for customized
datasets, we introduce the basic data format in the doc.

Basic Data Format

Point cloud Format

Currently, we only support .bin format point cloud for training and inference. Before training on your own datasets,
you need to convert your point cloud files with other formats to .bin files. The common point cloud data formats
include .pcd and .las, we list some open-source tools for reference.

1. Convert .pcd to .bin: https://github.com/DanielPollithy/pypcd

• You can install pypcd with the following command:

pip install git+https://github.com/DanielPollithy/pypcd.git

• You can use the following script to read the .pcd file and convert it to .bin format for saving:

import numpy as np
from pypcd import pypcd

pcd_data = pypcd.PointCloud.from_path('point_cloud_data.pcd')
points = np.zeros([pcd_data.width, 4], dtype=np.float32)
points[:, 0] = pcd_data.pc_data['x'].copy()
points[:, 1] = pcd_data.pc_data['y'].copy()

(continues on next page)
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points[:, 2] = pcd_data.pc_data['z'].copy()
points[:, 3] = pcd_data.pc_data['intensity'].copy().astype(np.float32)
with open('point_cloud_data.bin', 'wb') as f:

f.write(points.tobytes())

2. Convert .las to .bin: The common conversion path is .las -> .pcd -> .bin, and the conversion path
.las -> .pcd can be achieved through this tool.

Label Format

The most basic information: 3D bounding box and category label of each scene need to be contained in the .txt
annotation file. Each line represents a 3D box in a certain scene as follow:

# format: [x, y, z, dx, dy, dz, yaw, category_name]
1.23 1.42 0.23 3.96 1.65 1.55 1.56 Car
3.51 2.15 0.42 1.05 0.87 1.86 1.23 Pedestrian
...

Note: Currently we only support KITTI Metric evaluation for customized datasets evaluation.

The 3D Box should be stored in unified 3D coordinates.

Calibration Format

For the point cloud data collected by each LiDAR, they are usually fused and converted to a certain LiDAR coordinate.
So typically the calibration information file should contain the intrinsic matrix of each camera and the transformation
extrinsic matrix from the LiDAR to each camera in .txt calibration file, while Px represents the intrinsic matrix of
camera_x and lidar2camx represents the transformation extrinsic matrix from the lidar to camera_x.

P0
P1
P2
P3
P4
...
lidar2cam0
lidar2cam1
lidar2cam2
lidar2cam3
lidar2cam4
...
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Raw Data Structure

LiDAR-Based 3D Detection

The raw data for LiDAR-based 3D object detection are typically organized as follows, where ImageSets contains split
files indicating which files belong to training/validation set, points includes point cloud data which are supposed to
be stored in .bin format and labels includes label files for 3D detection.

mmdetection3d
mmdet3d
tools
configs
data

custom
ImageSets

train.txt
val.txt

points
000000.bin
000001.bin
...

labels
000000.txt
000001.txt
...

Vision-Based 3D Detection

The raw data for vision-based 3D object detection are typically organized as follows, where ImageSets contains split
files indicating which files belong to training/validation set, images contains the images from different cameras, for
example, images from camera_x need to be placed in images/images_x, calibs contains calibration information
files which store the camera intrinsic matrix of each camera, and labels includes label files for 3D detection.

mmdetection3d
mmdet3d
tools
configs
data

custom
ImageSets

train.txt
val.txt

calibs
000000.txt
000001.txt
...

images
images_0

000000.png
000001.png
...

images_1
(continues on next page)
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images_2
...

labels
000000.txt
000001.txt
...

Multi-Modality 3D Detection

The raw data for multi-modality 3D object detection are typically organized as follows. Different from vision-based 3D
object detection, calibration information files in calibs store the camera intrinsic matrix of each camera and extrinsic
matrix.

mmdetection3d
mmdet3d
tools
configs
data

custom
ImageSets

train.txt
val.txt

calibs
000000.txt
000001.txt
...

points
000000.bin
000001.bin
...

images
images_0

000000.png
000001.png
...

images_1
images_2
...

labels
000000.txt
000001.txt
...
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LiDAR-Based 3D Semantic Segmentation

The raw data for LiDAR-based 3D semantic segmentation are typically organized as follows, where ImageSets
contains split files indicating which files belong to training/validation set, points includes point cloud data, and
semantic_mask includes point-level label.

mmdetection3d
mmdet3d
tools
configs
data

custom
ImageSets

train.txt
val.txt

points
000000.bin
000001.bin
...

semantic_mask
000000.bin
000001.bin
...

Data Converter

Once you prepared the raw data following our instruction, you can directly use the following command to generate
training/validation information files.

python tools/create_data.py custom --root-path ./data/custom --out-dir ./data/custom --
→˓extra-tag custom

15.1.2 An example of customized dataset

Once we finish data preparation, we can create a new dataset in mmdet3d/datasets/my_dataset.py to load the
data.

import mmengine

from mmdet3d.registry import DATASETS
from .det3d_dataset import Det3DDataset

@DATASETS.register_module()
class MyDataset(Det3DDataset):

# replace with all the classes in customized pkl info file
METAINFO = {

'classes': ('Pedestrian', 'Cyclist', 'Car')
}

(continues on next page)
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def parse_ann_info(self, info):
"""Process the `instances` in data info to `ann_info`.

Args:
info (dict): Data information of single data sample.

Returns:
dict: Annotation information consists of the following keys:

- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
3D ground truth bboxes.

- gt_labels_3d (np.ndarray): Labels of ground truths.
"""
ann_info = super().parse_ann_info(info)
if ann_info is None:

ann_info = dict()
# empty instance
ann_info['gt_bboxes_3d'] = np.zeros((0, 7), dtype=np.float32)
ann_info['gt_labels_3d'] = np.zeros(0, dtype=np.int64)

# filter the gt classes not used in training
ann_info = self._remove_dontcare(ann_info)
gt_bboxes_3d = LiDARInstance3DBoxes(ann_info['gt_bboxes_3d'])
ann_info['gt_bboxes_3d'] = gt_bboxes_3d
return ann_info

After the data pre-processing, there are two steps for users to train the customized new dataset:

1. Modify the config file for using the customized dataset.

2. Check the annotations of the customized dataset.

Here we take training PointPillars on customized dataset as an example:

Prepare a config

Here we demonstrate a config sample for pure point cloud training.

Prepare dataset config

In configs/_base_/datasets/custom.py:

# dataset settings
dataset_type = 'MyDataset'
data_root = 'data/custom/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] # replace with your dataset class
point_cloud_range = [0, -40, -3, 70.4, 40, 1] # adjust according to your dataset
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

train_pipeline = [
dict(

(continues on next page)

120 Chapter 15. Customization



mmcv Documentation, Release 1.1.0

(continued from previous page)

type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # replace with your point cloud data dimension
use_dim=4), # replace with the actual dimension used in training and inference

dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True),

dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),

dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(

type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),

dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(

type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])

]
test_pipeline = [

dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # replace with your point cloud data dimension
use_dim=4),

dict(type='Pack3DDetInputs', keys=['points'])
]
# construct a pipeline for data and gt loading in show function
eval_pipeline = [

dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='Pack3DDetInputs', keys=['points']),

]
train_dataloader = dict(

batch_size=6,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(

type='RepeatDataset',
times=2,
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='custom_infos_train.pkl', # specify your training pkl info
data_prefix=dict(pts='points'),

(continues on next page)
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pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
box_type_3d='LiDAR')))

val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(

type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='points'),
ann_file='custom_infos_val.pkl', # specify your validation pkl info
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))

val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'custom_infos_val.pkl', # specify your validation pkl info
metric='bbox')

Prepare model config

For voxel-based detectors such as SECOND, PointPillars and CenterPoint, the point cloud range and voxel size should
be adjusted according to your dataset. Theoretically, voxel_size is linked to the setting of point_cloud_range.
Setting a smaller voxel_size will increase the voxel num and the corresponding memory consumption. In addition,
the following issues need to be noted:

If the point_cloud_range and voxel_size are set to be [0, -40, -3, 70.4, 40, 1] and [0.05, 0.05, 0.1]
respectively, then the shape of intermediate feature map should be [(1-(-3))/0.1+1, (40-(-40))/0.05, (70.
4-0)/0.05]=[41, 1600, 1408]. When changing point_cloud_range, remember to change the shape of inter-
mediate feature map in middle_encoder according to the voxel_size.

Regarding the setting of anchor_range, it is generally adjusted according to dataset. Note that z value needs to be
adjusted accordingly to the position of the point cloud, please refer to this issue.

Regarding the setting of anchor_size, it is usually necessary to count the average length, width and height of objects
in the entire training dataset as anchor_size to obtain the best results.

In configs/_base_/models/pointpillars_hv_secfpn_custom.py:

voxel_size = [0.16, 0.16, 4] # adjust according to your dataset
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] # adjust according to your dataset
model = dict(

type='VoxelNet',
data_preprocessor=dict(

type='Det3DDataPreprocessor',
voxel=True,

(continues on next page)
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voxel_layer=dict(
max_num_points=32,
point_cloud_range=point_cloud_range,
voxel_size=voxel_size,
max_voxels=(16000, 40000))),

voxel_encoder=dict(
type='PillarFeatureNet',
in_channels=4,
feat_channels=[64],
with_distance=False,
voxel_size=voxel_size,
point_cloud_range=point_cloud_range),

# the `output_shape` should be adjusted according to `point_cloud_range`
# and `voxel_size`
middle_encoder=dict(

type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]),
backbone=dict(

type='SECOND',
in_channels=64,
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
out_channels=[64, 128, 256]),

neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),

bbox_head=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=384,
feat_channels=384,
use_direction_classifier=True,
assign_per_class=True,
# adjust the `ranges` and `sizes` according to your dataset
anchor_generator=dict(

type='AlignedAnchor3DRangeGenerator',
ranges=[

[0, -39.68, -0.6, 69.12, 39.68, -0.6],
[0, -39.68, -0.6, 69.12, 39.68, -0.6],
[0, -39.68, -1.78, 69.12, 39.68, -1.78],

],
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
rotations=[0, 1.57],
reshape_out=False),

diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(

type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,

(continues on next page)
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loss_weight=1.0),
loss_bbox=dict(

type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(

type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),

# model training and testing settings
train_cfg=dict(

assigner=[
dict( # for Pedestrian

type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),

dict( # for Cyclist
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),

dict( # for Car
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),

],
allowed_border=0,
pos_weight=-1,
debug=False),

test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
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Prepare overall config

We combine all the configs above in configs/pointpillars/pointpillars_hv_secfpn_8xb6_custom.py:

_base_ = [
'../_base_/models/pointpillars_hv_secfpn_custom.py',
'../_base_/datasets/custom.py',
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'

]

Visualize your dataset (optional)

To validate whether your prepared data and config are correct, it’s highly recommended to use tools/misc/
browse_dataset.py script to visualize your dataset and annotations before training and validation. Please refer
to visualization doc for more details.

15.1.3 Evaluation

Once the data and config have been prepared, you can directly run the training/testing script following our doc.

Note: We only provide an implementation for KITTI style evaluation for the customized dataset. It should be included
in the dataset config:

val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'custom_infos_val.pkl', # specify your validation pkl info
metric='bbox')

15.2 Customize Models

We basically categorize model components into 6 types:

• encoder: Including voxel encoder and middle encoder used in voxel-based methods before backbone, e.g.,
HardVFE and PointPillarsScatter.

• backbone: Usually an FCN network to extract feature maps, e.g., ResNet, SECOND.

• neck: The component between backbones and heads, e.g., FPN, SECONDFPN.

• head: The component for specific tasks, e.g., bbox prediction and mask prediction.

• RoI extractor: The part for extracting RoI features from feature maps, e.g., H3DRoIHead and
PartAggregationROIHead.

• loss: The component in heads for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.
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15.2.1 Develop new components

Add a new encoder

Here we show how to develop new components with an example of HardVFE.

1. Define a new voxel encoder (e.g. HardVFE: Voxel feature encoder used in HV-SECOND)

Create a new file mmdet3d/models/voxel_encoders/voxel_encoder.py.

import torch.nn as nn

from mmdet3d.registry import MODELS

@MODELS.register_module()
class HardVFE(nn.Module):

def __init__(self, arg1, arg2):
pass

def forward(self, x): # should return a tuple
pass

2. Import the module

You can either add the following line to mmdet3d/models/voxel_encoders/__init__.py:

from .voxel_encoder import HardVFE

or alternatively add

custom_imports = dict(
imports=['mmdet3d.models.voxel_encoders.voxel_encoder'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the voxel encoder in your config file

model = dict(
...
voxel_encoder=dict(

type='HardVFE',
arg1=xxx,
arg2=yyy),

...
)

126 Chapter 15. Customization



mmcv Documentation, Release 1.1.0

Add a new backbone

Here we show how to develop new components with an example of SECOND (Sparsely Embedded Convolutional
Detection).

1. Define a new backbone (e.g. SECOND)

Create a new file mmdet3d/models/backbones/second.py.

from mmengine.model import BaseModule

from mmdet3d.registry import MODELS

@MODELS.register_module()
class SECOND(BaseModule):

def __init__(self, arg1, arg2):
pass

def forward(self, x): # should return a tuple
pass

2. Import the module

You can either add the following line to mmdet3d/models/backbones/__init__.py:

from .second import SECOND

or alternatively add

custom_imports = dict(
imports=['mmdet3d.models.backbones.second'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the backbone in your config file

model = dict(
...
backbone=dict(

type='SECOND',
arg1=xxx,
arg2=yyy),

...
)
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Add a new neck

1. Define a new neck (e.g. SECONDFPN)

Create a new file mmdet3d/models/necks/second_fpn.py.

from mmengine.model import BaseModule

from mmdet3d.registry import MODELS

@MODELS.register_module()
class SECONDFPN(BaseModule):

def __init__(self,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
upsample_cfg=dict(type='deconv', bias=False),
conv_cfg=dict(type='Conv2d', bias=False),
use_conv_for_no_stride=False,
init_cfg=None):

pass

def forward(self, x):
# implementation is ignored
pass

2. Import the module

You can either add the following line to mmdet3d/models/necks/__init__.py:

from .second_fpn import SECONDFPN

or alternatively add

custom_imports = dict(
imports=['mmdet3d.models.necks.second_fpn'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.
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3. Use the neck in your config file

model = dict(
...
neck=dict(

type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),

...
)

Add a new head

Here we show how to develop a new head with the example of PartA2 Head as the following.

Note: Here the example of PartA2 RoI Head is used in the second stage. For one-stage heads, please refer to examples
in mmdet3d/models/dense_heads/. They are more commonly used in 3D detection for autonomous driving due to
its simplicity and high efficiency.

First, add a new bbox head in mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py. PartA2 RoI
Head implements a new bbox head for object detection. To implement a bbox head, basically we need to implement
two functions of the new module as the following. Sometimes other related functions like loss and get_targets are
also required.

from mmengine.model import BaseModule

from mmdet3d.registry import MODELS

@MODELS.register_module()
class PartA2BboxHead(BaseModule):

"""PartA2 RoI head."""

def __init__(self,
num_classes,
seg_in_channels,
part_in_channels,
seg_conv_channels=None,
part_conv_channels=None,
merge_conv_channels=None,
down_conv_channels=None,
shared_fc_channels=None,
cls_channels=None,
reg_channels=None,
dropout_ratio=0.1,
roi_feat_size=14,
with_corner_loss=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
loss_bbox=dict(

type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
(continues on next page)
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loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='none',
loss_weight=1.0),

init_cfg=None):
super(PartA2BboxHead, self).__init__(init_cfg=init_cfg)

def forward(self, seg_feats, part_feats):
pass

Second, implement a new RoI Head if it is necessary. We plan to inherit the new PartAggregationROIHead from
Base3DRoIHead. We can find that a Base3DRoIHead already implements the following functions.

from mmdet.models.roi_heads import BaseRoIHead

from mmdet3d.registry import MODELS, TASK_UTILS

class Base3DRoIHead(BaseRoIHead):
"""Base class for 3d RoIHeads."""

def __init__(self,
bbox_head=None,
bbox_roi_extractor=None,
mask_head=None,
mask_roi_extractor=None,
train_cfg=None,
test_cfg=None,
init_cfg=None):

super(Base3DRoIHead, self).__init__(
bbox_head=bbox_head,
bbox_roi_extractor=bbox_roi_extractor,
mask_head=mask_head,
mask_roi_extractor=mask_roi_extractor,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)

def init_bbox_head(self, bbox_roi_extractor: dict,
bbox_head: dict) -> None:

"""Initialize box head and box roi extractor.

Args:
bbox_roi_extractor (dict or ConfigDict): Config of box

roi extractor.
bbox_head (dict or ConfigDict): Config of box in box head.

"""
self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor)
self.bbox_head = MODELS.build(bbox_head)

def init_assigner_sampler(self):
(continues on next page)
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"""Initialize assigner and sampler."""
self.bbox_assigner = None
self.bbox_sampler = None
if self.train_cfg:

if isinstance(self.train_cfg.assigner, dict):
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)

elif isinstance(self.train_cfg.assigner, list):
self.bbox_assigner = [

TASK_UTILS.build(res) for res in self.train_cfg.assigner
]

self.bbox_sampler = TASK_UTILS.build(self.train_cfg.sampler)

def init_mask_head(self):
"""Initialize mask head, skip since ``PartAggregationROIHead`` does not
have one."""
pass

Double Head’s modification is mainly in the bbox_forward logic, and it inherits other logics from the Base3DRoIHead.
In the mmdet3d/models/roi_heads/part_aggregation_roi_head.py, we implement the new RoI Head as the
following:

from typing import Dict, List, Tuple

from mmdet.models.task_modules import AssignResult, SamplingResult
from mmengine import ConfigDict
from torch import Tensor
from torch.nn import functional as F

from mmdet3d.registry import MODELS
from mmdet3d.structures import bbox3d2roi
from mmdet3d.utils import InstanceList
from ...structures.det3d_data_sample import SampleList
from .base_3droi_head import Base3DRoIHead

@MODELS.register_module()
class PartAggregationROIHead(Base3DRoIHead):

"""Part aggregation roi head for PartA2.

Args:
semantic_head (ConfigDict): Config of semantic head.
num_classes (int): The number of classes.
seg_roi_extractor (ConfigDict): Config of seg_roi_extractor.
bbox_roi_extractor (ConfigDict): Config of part_roi_extractor.
bbox_head (ConfigDict): Config of bbox_head.
train_cfg (ConfigDict): Training config.
test_cfg (ConfigDict): Testing config.

"""

def __init__(self,
semantic_head: dict,
num_classes: int = 3,

(continues on next page)
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seg_roi_extractor: dict = None,
bbox_head: dict = None,
bbox_roi_extractor: dict = None,
train_cfg: dict = None,
test_cfg: dict = None,
init_cfg: dict = None) -> None:

super(PartAggregationROIHead, self).__init__(
bbox_head=bbox_head,
bbox_roi_extractor=bbox_roi_extractor,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)

self.num_classes = num_classes
assert semantic_head is not None
self.init_seg_head(seg_roi_extractor, semantic_head)

def init_seg_head(self, seg_roi_extractor: dict,
semantic_head: dict) -> None:

"""Initialize semantic head and seg roi extractor.

Args:
seg_roi_extractor (dict): Config of seg

roi extractor.
semantic_head (dict): Config of semantic head.

"""
self.semantic_head = MODELS.build(semantic_head)
self.seg_roi_extractor = MODELS.build(seg_roi_extractor)

@property
def with_semantic(self):

"""bool: whether the head has semantic branch"""
return hasattr(self,

'semantic_head') and self.semantic_head is not None

def predict(self,
feats_dict: Dict,
rpn_results_list: InstanceList,
batch_data_samples: SampleList,
rescale: bool = False,
**kwargs) -> InstanceList:

"""Perform forward propagation of the roi head and predict detection
results on the features of the upstream network.

Args:
feats_dict (dict): Contains features from the first stage.
rpn_results_list (List[:obj:`InstanceData`]): Detection results

of rpn head.
batch_data_samples (List[:obj:`Det3DDataSample`]): The Data

samples. It usually includes information such as
`gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.

rescale (bool): If True, return boxes in original image space.
Defaults to False.

(continues on next page)
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Returns:
list[:obj:`InstanceData`]: Detection results of each sample
after the post process.
Each item usually contains following keys.

- scores_3d (Tensor): Classification scores, has a shape
(num_instances, )

- labels_3d (Tensor): Labels of bboxes, has a shape
(num_instances, ).

- bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
contains a tensor with shape (num_instances, C), where
C >= 7.

"""
assert self.with_bbox, 'Bbox head must be implemented in PartA2.'
assert self.with_semantic, 'Semantic head must be implemented' \

' in PartA2.'

batch_input_metas = [
data_samples.metainfo for data_samples in batch_data_samples

]
voxels_dict = feats_dict.pop('voxels_dict')
# TODO: Split predict semantic and bbox
results_list = self.predict_bbox(feats_dict, voxels_dict,

batch_input_metas, rpn_results_list,
self.test_cfg)

return results_list

def predict_bbox(self, feats_dict: Dict, voxel_dict: Dict,
batch_input_metas: List[dict],
rpn_results_list: InstanceList,
test_cfg: ConfigDict) -> InstanceList:

"""Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.

Args:
feats_dict (dict): Contains features from the first stage.
voxel_dict (dict): Contains information of voxels.
batch_input_metas (list[dict], Optional): Batch image meta info.

Defaults to None.
rpn_results_list (List[:obj:`InstanceData`]): Detection results

of rpn head.
test_cfg (Config): Test config.

Returns:
list[:obj:`InstanceData`]: Detection results of each sample
after the post process.
Each item usually contains following keys.

- scores_3d (Tensor): Classification scores, has a shape
(num_instances, )

- labels_3d (Tensor): Labels of bboxes, has a shape

(continues on next page)
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(num_instances, ).
- bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
contains a tensor with shape (num_instances, C), where
C >= 7.

"""
...

def loss(self, feats_dict: Dict, rpn_results_list: InstanceList,
batch_data_samples: SampleList, **kwargs) -> dict:

"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.

Args:
feats_dict (dict): Contains features from the first stage.
rpn_results_list (List[:obj:`InstanceData`]): Detection results

of rpn head.
batch_data_samples (List[:obj:`Det3DDataSample`]): The Data

samples. It usually includes information such as
`gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.

Returns:
dict[str, Tensor]: A dictionary of loss components

"""
assert len(rpn_results_list) == len(batch_data_samples)
losses = dict()
batch_gt_instances_3d = []
batch_gt_instances_ignore = []
voxels_dict = feats_dict.pop('voxels_dict')
for data_sample in batch_data_samples:

batch_gt_instances_3d.append(data_sample.gt_instances_3d)
if 'ignored_instances' in data_sample:

batch_gt_instances_ignore.append(data_sample.ignored_instances)
else:

batch_gt_instances_ignore.append(None)
if self.with_semantic:

semantic_results = self._semantic_forward_train(
feats_dict, voxels_dict, batch_gt_instances_3d)

losses.update(semantic_results.pop('loss_semantic'))

sample_results = self._assign_and_sample(rpn_results_list,
batch_gt_instances_3d)

if self.with_bbox:
feats_dict.update(semantic_results)
bbox_results = self._bbox_forward_train(feats_dict, voxels_dict,

sample_results)
losses.update(bbox_results['loss_bbox'])

return losses

Here we omit more details related to other functions. Please see the code for more details.

Last, the users need to add the module in mmdet3d/models/roi_heads/bbox_heads/__init__.py and mmdet3d/
models/roi_heads/__init__.py thus the corresponding registry could find and load them.
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Alternatively, the users can add

custom_imports=dict(
imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_

→˓heads.bbox_heads.parta2_bbox_head'],
allow_failed_imports=False)

to the config file and achieve the same goal.

The config file of PartAggregationROIHead is as the following:

model = dict(
...
roi_head=dict(

type='PartAggregationROIHead',
num_classes=3,
semantic_head=dict(

type='PointwiseSemanticHead',
in_channels=16,
extra_width=0.2,
seg_score_thr=0.3,
num_classes=3,
loss_seg=dict(

type='mmdet.FocalLoss',
use_sigmoid=True,
reduction='sum',
gamma=2.0,
alpha=0.25,
loss_weight=1.0),

loss_part=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0)),

seg_roi_extractor=dict(
type='Single3DRoIAwareExtractor',
roi_layer=dict(

type='RoIAwarePool3d',
out_size=14,
max_pts_per_voxel=128,
mode='max')),

bbox_roi_extractor=dict(
type='Single3DRoIAwareExtractor',
roi_layer=dict(

type='RoIAwarePool3d',
out_size=14,
max_pts_per_voxel=128,
mode='avg')),

bbox_head=dict(
type='PartA2BboxHead',
num_classes=3,
seg_in_channels=16,
part_in_channels=4,
seg_conv_channels=[64, 64],
part_conv_channels=[64, 64],

(continues on next page)
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merge_conv_channels=[128, 128],
down_conv_channels=[128, 256],
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
shared_fc_channels=[256, 512, 512, 512],
cls_channels=[256, 256],
reg_channels=[256, 256],
dropout_ratio=0.1,
roi_feat_size=14,
with_corner_loss=True,
loss_bbox=dict(

type='mmdet.SmoothL1Loss',
beta=1.0 / 9.0,
reduction='sum',
loss_weight=1.0),

loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0))),

...
)

Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification.
The second stage of PartA2 Head mainly uses a new PartAggregationROIHead and a new PartA2BboxHead, the
arguments are set according to the __init__ function of each module.

Add a new loss

Assume you want to add a new loss as MyLoss for bounding box regression. To add a new loss function, the users need
to implement it in mmdet3d/models/losses/my_loss.py. The decorator weighted_loss enables the loss to be
weighted for each element.

import torch
import torch.nn as nn
from mmdet.models.losses.utils import weighted_loss

from mmdet3d.registry import MODELS

@weighted_loss
def my_loss(pred, target):

assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss

@MODELS.register_module()
class MyLoss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()

(continues on next page)
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self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):

assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (

reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(

pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox

Then the users need to add it in the mmdet3d/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss

Alternatively, you can add

custom_imports=dict(
imports=['mmdet3d.models.losses.my_loss'],
allow_failed_imports=False)

to the config file and achieve the same goal.

To use it, users should modify the loss_xxx field. Since MyLoss is for regression, you need to modify the loss_bbox
field in the head.

loss_bbox=dict(type='MyLoss', loss_weight=1.0)

15.3 Customize Runtime Settings

15.3.1 Customize optimization settings

Optimization related configuration is now all managed by optim_wrapperwhich usually has three fields: optimizer,
paramwise_cfg, clip_grad. Please refer to OptimWrapper for more details. See the example below, where AdamW
is used as an optimizer, the learning rate of the backbone is reduced by a factor of 10, and gradient clipping is added.

optim_wrapper = dict(
type='OptimWrapper',
# optimizer
optimizer=dict(

type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),

(continues on next page)
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# Parameter-level learning rate and weight decay settings
paramwise_cfg=dict(

custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0),

},
norm_decay_mult=0.0),

# gradient clipping
clip_grad=dict(max_norm=0.01, norm_type=2))

Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the
optimizer field in optim_wrapper field of config files. For example, if you want to use Adam (note that the perfor-
mance could drop a lot), the modification could be as the following:

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='Adam', lr=0.0003, weight_decay=0.0001))

To modify the learning rate of the model, the users only need to modify the lr in optimizer. The users can directly
set arguments following the API doc of PyTorch.

Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as following:

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c. You need to create a new
directory named mmdet3d/engine/optimizers, and then implement the new optimizer in a file, e.g., in mmdet3d/
engine/optimizers/my_optimizer.py:

from torch.optim import Optimizer

from mmdet3d.registry import OPTIMIZERS

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, c):
pass
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2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are
two options to achieve it.

• Modify mmdet3d/engine/optimizers/__init__.py to import it.

The newly defined module should be imported in mmdet3d/engine/optimizers/__init__.py so that the
registry will find the new module and add it:

from .my_optimizer import MyOptimizer

• Use custom_imports in the config to manually import it.

custom_imports = dict(imports=['mmdet3d.engine.optimizers.my_optimizer'], allow_
→˓failed_imports=False)

The module mmdet3d.engine.optimizers.my_optimizer will be imported at the beginning of the program
and the class MyOptimizer is then automatically registered. Note that only the package containing the class
MyOptimizer should be imported. mmdet3d.engine.optimizers.my_optimizer.MyOptimizer cannot
be imported directly.

Actually users can use a totally different file directory structure with this importing method, as long as the module
root is located in PYTHONPATH.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field in optim_wrapper field of config files. In the configs, the
optimizers are defined by the field optimizer like the following:

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))

To use your own optimizer, the field can be changed to:

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value))

Customize optimizer wrapper constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer wrapper constructor.

from mmengine.optim import DefaultOptimWrapperConstructor

from mmdet3d.registry import OPTIM_WRAPPER_CONSTRUCTORS
from .my_optimizer import MyOptimizer

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimizerWrapperConstructor(DefaultOptimWrapperConstructor):

(continues on next page)
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def __init__(self,
optim_wrapper_cfg: dict,
paramwise_cfg: Optional[dict] = None):

pass

def __call__(self, model: nn.Module) -> OptimWrapper:

return optim_wrapper

The default optimizer wrapper constructor is implemented here, which could also serve as a template for the new
optimizer wrapper constructor.

Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer wrapper constructor (e.g., set
parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate
the training. Feel free to create PR, issue for more settings.

• Use gradient clip to stabilize training: Some models need gradient clip to clip the gradients to stabilize the
training process. An example is as below:

optim_wrapper = dict(
_delete_=True, clip_grad=dict(max_norm=35, norm_type=2))

If your config inherits the base config which already sets the optim_wrapper, you might need _delete_=True
to override the unnecessary settings. See the config documentation for more details.

• Use momentum schedule to accelerate model convergence: We support momentum scheduler to modify
model’s momentum according to learning rate, which could make the model converge in a faster way. Mo-
mentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection
to accelerate convergence. For more details, please refer to the implementation of CosineAnnealingLR and
CosineAnnealingMomentum.

param_scheduler = [
# learning rate scheduler
# During the first 8 epochs, learning rate increases from 0 to lr * 10
# during the next 12 epochs, learning rate decreases from lr * 10 to lr * 1e-4
dict(

type='CosineAnnealingLR',
T_max=8,
eta_min=lr * 10,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=12,
eta_min=lr * 1e-4,
begin=8,
end=20,
by_epoch=True,

(continues on next page)
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convert_to_iter_based=True),
# momentum scheduler
# During the first 8 epochs, momentum increases from 0 to 0.85 / 0.95
# during the next 12 epochs, momentum increases from 0.85 / 0.95 to 1
dict(

type='CosineAnnealingMomentum',
T_max=8,
eta_min=0.85 / 0.95,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),

dict(
type='CosineAnnealingMomentum',
T_max=12,
eta_min=1,
begin=8,
end=20,
by_epoch=True,
convert_to_iter_based=True)

]

15.3.2 Customize training schedules

By default we use step learning rate with 1x schedule, this calls MultiStepLR in MMEngine. We support many other
learning rate schedule here, such as CosineAnnealingLR and PolyLR schedules. Here are some examples:

• Poly schedule:

param_scheduler = [
dict(

type='PolyLR',
power=0.9,
eta_min=1e-4,
begin=0,
end=8,
by_epoch=True)]

• CosineAnnealing schedule:

param_scheduler = [
dict(

type='CosineAnnealingLR',
T_max=8,
eta_min=lr * 1e-5,
begin=0,
end=8,
by_epoch=True)]
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15.3.3 Customize train loop

By default, EpochBasedTrainLoop is used in train_cfg and validation is done after every train epoch, as follows:

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_begin=1, val_interval=1)

Actually, both IterBasedTrainLoop and EpochBasedTrainLoop support dynamic interval, see the following ex-
ample:

# Before 365001th iteration, we do evaluation every 5000 iterations.
# After 365000th iteration, we do evaluation every 368750 iterations,
# which means that we do evaluation at the end of training.

interval = 5000
max_iters = 368750
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
train_cfg = dict(

type='IterBasedTrainLoop',
max_iters=max_iters,
val_interval=interval,
dynamic_intervals=dynamic_intervals)

15.3.4 Customize hooks

Customize self-implemented hooks

1. Implement a new hook

MMEngine provides many useful hooks, but there are some occasions when the users might need to implement a new
hook. MMDetection3D supports customized hooks in training based on MMEngine after v1.1.0rc0. Thus the users
could implement a hook directly in mmdet3d or their mmdet3d-based codebases and use the hook by only modifying
the config in training. Here we give an example of creating a new hook in mmdet3d and using it in training.

from mmengine.hooks import Hook

from mmdet3d.registry import HOOKS

@HOOKS.register_module()
class MyHook(Hook):

def __init__(self, a, b):

def before_run(self, runner) -> None:

def after_run(self, runner) -> None:

def before_train(self, runner) -> None:

def after_train(self, runner) -> None:

def before_train_epoch(self, runner) -> None:
(continues on next page)
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def after_train_epoch(self, runner) -> None:

def before_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None) -> None:

def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:

Depending on the functionality of the hook, users need to specify what the hook will do at each stage of the train-
ing in before_run, after_run, before_train, after_train, before_train_epoch, after_train_epoch,
before_train_iter, and after_train_iter. There are more points where hooks can be inserted, refer to base
hook class for more details.

2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmdet3d/engine/hooks/my_hook.py, there are
two ways to do that:

• Modify mmdet3d/engine/hooks/__init__.py to import it.

The newly defined module should be imported in mmdet3d/engine/hooks/__init__.py so that the registry
will find the new module and add it:

from .my_hook import MyHook

• Use custom_imports in the config to manually import it.

custom_imports = dict(imports=['mmdet3d.engine.hooks.my_hook'], allow_failed_
→˓imports=False)

3. Modify the config

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value)

]

You can also set the priority of the hook by adding key priority to 'NORMAL' or 'HIGHEST' as below:

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')

]

By default the hook’s priority is set as NORMAL during registration.
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Use hooks implemented in MMDetection3D

If the hook is already implemented in MMDetection3D, you can directly modify the config to use the hook as below.

Example: DisableObjectSampleHook

We implement a customized hook named DisableObjectSampleHook to disable ObjectSample augmentation during
training after specified epoch.

We can set it in the config file if needed:

custom_hooks = [dict(type='DisableObjectSampleHook', disable_after_epoch=15)]

Modify default runtime hooks

There are some common hooks that are registered through default_hooks, they are

• IterTimerHook: A hook that logs ‘data_time’ for loading data and ‘time’ for a model training step.

• LoggerHook: A hook that collects logs from different components of Runner and writes them to terminal, json
file, tensorboard and wandb etc.

• ParamSchedulerHook: A hook that updates some hyper-parameters in optimizer, e.g., learning rate and mo-
mentum.

• CheckpointHook: A hook that saves checkpoints periodically.

• DistSamplerSeedHook: A hook that sets the seed for sampler and batch_sampler.

• Det3DVisualizationHook: A hook used to visualize validation and testing process prediction results.

IterTimerHook, ParamSchedulerHook and DistSamplerSeedHook are simple and no need to be modified usually,
so here we reveal what we can do with LoggerHook, CheckpointHook and Det3DVisualizationHook.

CheckpointHook

Except saving checkpoints periodically, CheckpointHook provides other options such as max_keep_ckpts,
save_optimizer and etc. The users could set max_keep_ckpts to only save small number of checkpoints or de-
cide whether to store state dict of optimizer by save_optimizer. More details of the arguments are here.

default_hooks = dict(
checkpoint=dict(

type='CheckpointHook',
interval=1,
max_keep_ckpts=3,
save_optimizer=True))
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LoggerHook

The LoggerHook enables setting intervals. Detailed instructions can be found in the docstring.

default_hooks = dict(logger=dict(type='LoggerHook', interval=50))

Det3DVisualizationHook

Det3DVisualizationHook use DetLocalVisualizer to visualize prediction results, and Det3DLocalVisualizer
current supports different backends, e.g., TensorboardVisBackend and WandbVisBackend (see docstring for more
details). The users could add multi backends to do visualization as follows.

default_hooks = dict(
visualization=dict(type='Det3DVisualizationHook', draw=True))

vis_backends = [dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend')]

visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')

Along with the release of OpenMMLab 2.0, MMDetection3D (namely MMDet3D) 1.1 made many significant changes,
resulting in less redundant, more efficient code and a more consistent overall design. These changes break backward
compatibility. Therefore, we prepared this migration guide to make the transition as smooth as possible so that all users
can enjoy the productivity benefits of the new MMDet3D and the entire OpenMMLab 2.0 ecosystem.
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SIXTEEN

ENVIRONMENT

MMDet3D 1.1 depends on the new foundational library MMEngine for training deep learning models, and therefore
has an entirely different dependency chain compared with MMDet3D 1.0. Even if you have a well-rounded MMDet3D
1.0 / 0.x environment before, you still need to create a new Python environment for MMDet3D 1.1. We provide a
detailed installation guide for reference.

The configuration files in our new version have a lot of modifications because of the differences between MMCV 1.x
and MMEngine. The guides for migration from MMCV to MMEngine can be seen here.

We have renamed the names of the remote branches in MMDet3D 1.1 (renaming 1.1 to main, master to 1.0, and dev
to dev-1.0). If your local branches in the git system are not aligned with branches of the remote repo, you can use the
following commands to resolve it:

git fetch origin
git checkout main
git branch main_backup # backup your main branch
git reset --hard origin/main
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SEVENTEEN

DATASET

You should update the annotation files generated in the 1.0 version since some key words and structures of annotation
in MMDet3D 1.1 have changed. Taking KITTI as an example, the update script is as follows:

python tools/dataset_converters/update_infos_to_v2.py
--dataset kitti
--pkl-path ./data/kitti/kitti_infos_train.pkl
--out-dir ./kitti_v2/

If your annotation files are generated in the 0.x version, you should first update them to 1.0 version using this script.
Alternatively, you can re-generate annotation files from scratch using this script.
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CHAPTER

EIGHTEEN

MODEL

MMDet3D 1.1 supports loading weights trained on the old version (1.0 version). For models that are important or
frequently used, we have thoroughly verified their precisions in the 1.1 version. Especially for some models that may
experience potential performance drop or training bugs in the old version, such as centerpoint, we have checked them
and ensured the right precision in the new version. If you encounter any problem, please feel free to raise an issue.
Additionally, we have added some of the latest SOTA methods in our package and projects, making MMDet3D 1.1 a
highly recommended choice for implementing your project.
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MMDET3D.APIS
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TWENTY

MMDET3D.DATASETS

20.1 datasets

20.2 transforms
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TWENTYONE

MMDET3D.ENGINE

21.1 hooks
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TWENTYTWO

MMDET3D.EVALUATION

22.1 functional

22.2 metrics
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TWENTYTHREE

MMDET3D.MODELS

23.1 backbones

23.2 data_preprocessors

23.3 decode_heads

23.4 dense_heads

23.5 detectors

23.6 layers

23.7 losses

23.8 middle_encoders

23.9 necks

23.10 roi_heads

23.11 segmentors

23.12 task_modules

23.13 test_time_augs

23.14 utils

23.15 voxel_encoders
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TWENTYFOUR

MMDET3D.STRUCTURES

24.1 structures

24.2 bbox_3d

class mmdet3d.structures.bbox_3d.BaseInstance3DBoxes(tensor, box_dim=7, with_yaw=True,
origin=(0.5, 0.5, 0))

Base class for 3D Boxes.

Note: The box is bottom centered, i.e. the relative position of origin in the box is (0.5, 0.5, 0).

Parameters
• tensor (torch.Tensor | np.ndarray | list) – a N x box_dim matrix.

• box_dim (int) – Number of the dimension of a box. Each row is (x, y, z, x_size, y_size,
z_size, yaw). Defaults to 7.

• with_yaw (bool) – Whether the box is with yaw rotation. If False, the value of yaw will be
set to 0 as minmax boxes. Defaults to True.

• origin (tuple[float], optional) – Relative position of the box origin. Defaults to
(0.5, 0.5, 0). This will guide the box be converted to (0.5, 0.5, 0) mode.

tensor
Float matrix of N x box_dim.

Type torch.Tensor

box_dim
Integer indicating the dimension of a box. Each row is (x, y, z, x_size, y_size, z_size, yaw, . . . ).

Type int

with_yaw
If True, the value of yaw will be set to 0 as minmax boxes.

Type bool

property bev
2D BEV box of each box with rotation in XYWHR format, in shape (N, 5).

Type torch.Tensor
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property bottom_center
A tensor with center of each box in shape (N, 3).

Type torch.Tensor

property bottom_height
torch.Tensor: A vector with bottom’s height of each box in shape (N, ).

classmethod cat(boxes_list)
Concatenate a list of Boxes into a single Boxes.

Parameters boxes_list (list[BaseInstance3DBoxes]) – List of boxes.

Returns The concatenated Boxes.

Return type BaseInstance3DBoxes
property center

Calculate the center of all the boxes.

Note: In MMDetection3D’s convention, the bottom center is usually taken as the default center.

The relative position of the centers in different kinds of boxes are different, e.g., the relative center of a
boxes is (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is recommended to use bottom_center or
gravity_center for clearer usage.

Returns A tensor with center of each box in shape (N, 3).

Return type torch.Tensor

clone()
Clone the Boxes.

Returns
Box object with the same properties as self.

Return type BaseInstance3DBoxes
abstract convert_to(dst, rt_mat=None)

Convert self to dst mode.

Parameters
• dst (Box3DMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns
The converted box of the same type in the dst mode.

Return type BaseInstance3DBoxes
property corners

torch.Tensor: a tensor with 8 corners of each box in shape (N, 8, 3).

property device
The device of the boxes are on.
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Type str

property dims
Size dimensions of each box in shape (N, 3).

Type torch.Tensor

abstract flip(bev_direction='horizontal')
Flip the boxes in BEV along given BEV direction.

Parameters bev_direction (str, optional) – Direction by which to flip. Can be chosen
from ‘horizontal’ and ‘vertical’. Defaults to ‘horizontal’.

property gravity_center
A tensor with center of each box in shape (N, 3).

Type torch.Tensor

property height
A vector with height of each box in shape (N, ).

Type torch.Tensor

classmethod height_overlaps(boxes1, boxes2, mode='iou')
Calculate height overlaps of two boxes.

Note: This function calculates the height overlaps between boxes1 and boxes2, boxes1 and boxes2 should
be in the same type.

Parameters
• boxes1 (BaseInstance3DBoxes) – Boxes 1 contain N boxes.

• boxes2 (BaseInstance3DBoxes) – Boxes 2 contain M boxes.

• mode (str, optional) – Mode of IoU calculation. Defaults to ‘iou’.

Returns Calculated iou of boxes.

Return type torch.Tensor

in_range_3d(box_range)
Check whether the boxes are in the given range.

Parameters box_range (list | torch.Tensor) – The range of box (x_min, y_min, z_min,
x_max, y_max, z_max)

Note: In the original implementation of SECOND, checking whether a box in the range checks whether
the points are in a convex polygon, we try to reduce the burden for simpler cases.

Returns
A binary vector indicating whether each box is inside the reference range.

Return type torch.Tensor

in_range_bev(box_range)
Check whether the boxes are in the given range.
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Parameters box_range (list | torch.Tensor) – the range of box (x_min, y_min, x_max,
y_max)

Note: The original implementation of SECOND checks whether boxes in a range by checking whether
the points are in a convex polygon, we reduce the burden for simpler cases.

Returns Whether each box is inside the reference range.

Return type torch.Tensor

limit_yaw(offset=0.5, period=3.141592653589793)
Limit the yaw to a given period and offset.

Parameters
• offset (float, optional) – The offset of the yaw. Defaults to 0.5.

• period (float, optional) – The expected period. Defaults to np.pi.

property nearest_bev
A tensor of 2D BEV box of each box without rotation.

Type torch.Tensor

new_box(data)
Create a new box object with data.

The new box and its tensor has the similar properties as self and self.tensor, respectively.

Parameters data (torch.Tensor | numpy.array | list) – Data to be copied.

Returns
A new bbox object with data, the object’s other properties are similar to self.

Return type BaseInstance3DBoxes

nonempty(threshold=0.0)
Find boxes that are non-empty.

A box is considered empty, if either of its side is no larger than threshold.

Parameters threshold (float, optional) – The threshold of minimal sizes. Defaults to 0.0.

Returns
A binary vector which represents whether each box is empty (False) or non-empty

(True).

Return type torch.Tensor

classmethod overlaps(boxes1, boxes2, mode='iou')
Calculate 3D overlaps of two boxes.

Note: This function calculates the overlaps between boxes1 and boxes2, boxes1 and boxes2 should be
in the same type.

Parameters
• boxes1 (BaseInstance3DBoxes) – Boxes 1 contain N boxes.
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• boxes2 (BaseInstance3DBoxes) – Boxes 2 contain M boxes.

• mode (str, optional) – Mode of iou calculation. Defaults to ‘iou’.

Returns Calculated 3D overlaps of the boxes.

Return type torch.Tensor

points_in_boxes_all(points, boxes_override=None)
Find all boxes in which each point is.

Parameters
• points (torch.Tensor) – Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z)

in LiDAR or depth coordinate.

• boxes_override (torch.Tensor, optional) – Boxes to override self.tensor. Defaults
to None.

Returns
A tensor indicating whether a point is in a box, in shape (M, T). T is the number of boxes.

Denote this tensor as A, if the m^th point is in the t^th box, then A[m, t] == 1, elsewise
A[m, t] == 0.

Return type torch.Tensor

points_in_boxes_part(points, boxes_override=None)
Find the box in which each point is.

Parameters
• points (torch.Tensor) – Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z)

in LiDAR or depth coordinate.

• boxes_override (torch.Tensor, optional) – Boxes to override self.tensor. Defaults
to None.

Returns
The index of the first box that each point is in, in shape (M, ). Default value is -1 (if the

point is not enclosed by any box).

Return type torch.Tensor

Note: If a point is enclosed by multiple boxes, the index of the first box will be returned.

abstract rotate(angle, points=None)
Rotate boxes with points (optional) with the given angle or rotation matrix.

Parameters
• angle (float | torch.Tensor | np.ndarray) – Rotation angle or rotation matrix.

• (torch.Tensor | numpy.ndarray | (points) – BasePoints, optional): Points to ro-
tate. Defaults to None.

scale(scale_factor)
Scale the box with horizontal and vertical scaling factors.

Parameters scale_factors (float) – Scale factors to scale the boxes.

to(device, *args, **kwargs)
Convert current boxes to a specific device.
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Parameters device (str | torch.device) – The name of the device.

Returns
A new boxes object on the specific device.

Return type BaseInstance3DBoxes
property top_height

torch.Tensor: A vector with the top height of each box in shape (N, ).

translate(trans_vector)
Translate boxes with the given translation vector.

Parameters trans_vector (torch.Tensor) – Translation vector of size (1, 3).

property volume
A vector with volume of each box.

Type torch.Tensor

property yaw
A vector with yaw of each box in shape (N, ).

Type torch.Tensor

class mmdet3d.structures.bbox_3d.Box3DMode(value)
Enum of different ways to represent a box.

Coordinates in LiDAR:

up z
^ x front
| /
| /

left y <------ 0

The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2.

Coordinates in camera:

z front
/
/

0 ------> x right
|
|
v

down y

The relative coordinate of bottom center in a CAM box is (0.5, 1.0, 0.5), and the yaw is around the y axis, thus
the rotation axis=1.

Coordinates in Depth mode:

up z
^ y front
| /
| /
0 ------> x right
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The relative coordinate of bottom center in a DEPTH box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2.

static convert(box, src, dst, rt_mat=None, with_yaw=True, correct_yaw=False)
Convert boxes from src mode to dst mode.

Parameters
• (tuple | list | np.ndarray | (box) – torch.Tensor | BaseInstance3DBoxes):

Can be a k-tuple, k-list or an Nxk array/tensor, where k = 7.

• src (Box3DMode) – The src Box mode.

• dst (Box3DMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

• with_yaw (bool, optional) – If box is an instance of BaseInstance3DBoxes, whether
or not it has a yaw angle. Defaults to True.

• correct_yaw (bool) – If the yaw is rotated by rt_mat.

Returns
(tuple | list | np.ndarray | torch.Tensor | BaseInstance3DBoxes): The converted box of

the same type.

class mmdet3d.structures.bbox_3d.CameraInstance3DBoxes(tensor, box_dim=7, with_yaw=True,
origin=(0.5, 1.0, 0.5))

3D boxes of instances in CAM coordinates.

Coordinates in camera:

z front (yaw=-0.5*pi)
/
/

0 ------> x right (yaw=0)
|
|
v

down y

The relative coordinate of bottom center in a CAM box is (0.5, 1.0, 0.5), and the yaw is around the y axis, thus
the rotation axis=1. The yaw is 0 at the positive direction of x axis, and decreases from the positive direction of
x to the positive direction of z.

tensor
Float matrix in shape (N, box_dim).

Type torch.Tensor

box_dim
Integer indicating the dimension of a box Each row is (x, y, z, x_size, y_size, z_size, yaw, . . . ).

Type int

with_yaw
If True, the value of yaw will be set to 0 as axis-aligned boxes tightly enclosing the original boxes.

Type bool
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property bev
2D BEV box of each box with rotation in XYWHR format, in shape (N, 5).

Type torch.Tensor

property bottom_height
torch.Tensor: A vector with bottom’s height of each box in shape (N, ).

convert_to(dst, rt_mat=None, correct_yaw=False)
Convert self to dst mode.

Parameters
• dst (Box3DMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

• correct_yaw (bool) – Whether to convert the yaw angle to the target coordinate. Defaults
to False.

Returns The converted box of the same type in the dst mode.

Return type BaseInstance3DBoxes
property corners

Coordinates of corners of all the boxes in shape (N, 8, 3).

Convert the boxes to in clockwise order, in the form of (x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1,
x1y1z1, x1y1z0)

front z
/
/

(x0, y0, z1) + ----------- + (x1, y0, z1)
/| / |
/ | / |

(x0, y0, z0) + ----------- + + (x1, y1, z1)
| / . | /
| / origin | /

(x0, y1, z0) + ----------- + -------> x right
| (x1, y1, z0)
|
v

down y

Type torch.Tensor

flip(bev_direction='horizontal', points=None)
Flip the boxes in BEV along given BEV direction.

In CAM coordinates, it flips the x (horizontal) or z (vertical) axis.

Parameters
• bev_direction (str) – Flip direction (horizontal or vertical).

• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to flip. Defaults to
None.
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Returns Flipped points.

Return type torch.Tensor, numpy.ndarray or None

property gravity_center
A tensor with center of each box in shape (N, 3).

Type torch.Tensor

property height
A vector with height of each box in shape (N, ).

Type torch.Tensor

classmethod height_overlaps(boxes1, boxes2, mode='iou')
Calculate height overlaps of two boxes.

This function calculates the height overlaps between boxes1 and boxes2, where boxes1 and boxes2
should be in the same type.

Parameters
• boxes1 (CameraInstance3DBoxes) – Boxes 1 contain N boxes.

• boxes2 (CameraInstance3DBoxes) – Boxes 2 contain M boxes.

• mode (str, optional) – Mode of iou calculation. Defaults to ‘iou’.

Returns Calculated iou of boxes’ heights.

Return type torch.Tensor

property local_yaw
torch.Tensor: A vector with local yaw of each box in shape (N, ). local_yaw equals to alpha in kitti,
which is commonly used in monocular 3D object detection task, so only CameraInstance3DBoxes has
the property.

points_in_boxes_all(points, boxes_override=None)
Find all boxes in which each point is.

Parameters
• points (torch.Tensor) – Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z)

in LiDAR or depth coordinate.

• boxes_override (torch.Tensor, optional) – Boxes to override `self.tensor `. De-
faults to None.

Returns
The index of all boxes in which each point is, in shape (B, M, T).

Return type torch.Tensor

points_in_boxes_part(points, boxes_override=None)
Find the box in which each point is.

Parameters
• points (torch.Tensor) – Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z)

in LiDAR or depth coordinate.

• boxes_override (torch.Tensor, optional) – Boxes to override `self.tensor `. De-
faults to None.

Returns
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The index of the box in which each point is, in shape (M, ). Default value is -1 (if the point
is not enclosed by any box).

Return type torch.Tensor

rotate(angle, points=None)
Rotate boxes with points (optional) with the given angle or rotation matrix.

Parameters
• angle (float | torch.Tensor | np.ndarray) – Rotation angle or rotation matrix.

• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to rotate. Defaults to
None.

Returns
When points is None, the function returns None, otherwise it returns the rotated points

and the rotation matrix rot_mat_T.

Return type tuple or None

property top_height
torch.Tensor: A vector with the top height of each box in shape (N, ).

class mmdet3d.structures.bbox_3d.Coord3DMode(value)

Enum of different ways to represent a box and point cloud.

Coordinates in LiDAR:

up z
^ x front
| /
| /

left y <------ 0

The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2.

Coordinates in camera:

z front
/
/

0 ------> x right
|
|
v

down y

The relative coordinate of bottom center in a CAM box is (0.5, 1.0, 0.5), and the yaw is around the y axis, thus
the rotation axis=1.

Coordinates in Depth mode:

up z
^ y front
| /

(continues on next page)
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(continued from previous page)

| /
0 ------> x right

The relative coordinate of bottom center in a DEPTH box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2.

static convert(input, src, dst, rt_mat=None, with_yaw=True, is_point=True)
Convert boxes or points from src mode to dst mode.

Parameters
• (tuple | list | np.ndarray | torch.Tensor | (input) –
BaseInstance3DBoxes | BasePoints): Can be a k-tuple, k-list or an Nxk array/tensor,
where k = 7.

• src (Box3DMode | Coord3DMode) – The source mode.

• dst (Box3DMode | Coord3DMode) – The target mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

• with_yaw (bool) – If box is an instance of BaseInstance3DBoxes, whether or not it has
a yaw angle. Defaults to True.

• is_point (bool) – If input is neither an instance of BaseInstance3DBoxes nor an in-
stance of BasePoints, whether or not it is point data. Defaults to True.

Returns
(tuple | list | np.ndarray | torch.Tensor | BaseInstance3DBoxes | BasePoints): The

converted box of the same type.

static convert_box(box, src, dst, rt_mat=None, with_yaw=True)
Convert boxes from src mode to dst mode.

Parameters
• (tuple | list | np.ndarray | (box) – torch.Tensor | BaseInstance3DBoxes):

Can be a k-tuple, k-list or an Nxk array/tensor, where k = 7.

• src (Box3DMode) – The src Box mode.

• dst (Box3DMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

• with_yaw (bool) – If box is an instance of BaseInstance3DBoxes, whether or not it has
a yaw angle. Defaults to True.

Returns
(tuple | list | np.ndarray | torch.Tensor | BaseInstance3DBoxes): The converted box of

the same type.

static convert_point(point, src, dst, rt_mat=None)
Convert points from src mode to dst mode.
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Parameters
• (tuple | list | np.ndarray | (point) – torch.Tensor | BasePoints): Can be a k-

tuple, k-list or an Nxk array/tensor.

• src (CoordMode) – The src Point mode.

• dst (CoordMode) – The target Point mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns The converted point of the same type.

Return type (tuple | list | np.ndarray | torch.Tensor | BasePoints)

class mmdet3d.structures.bbox_3d.DepthInstance3DBoxes(tensor, box_dim=7, with_yaw=True,
origin=(0.5, 0.5, 0))

3D boxes of instances in Depth coordinates.

Coordinates in Depth:

up z y front (yaw=0.5*pi)
^ ^
| /
| /
0 ------> x right (yaw=0)

The relative coordinate of bottom center in a Depth box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2. The yaw is 0 at the positive direction of x axis, and decreases from the positive direction of
x to the positive direction of y. Also note that rotation of DepthInstance3DBoxes is counterclockwise, which is
reverse to the definition of the yaw angle (clockwise).

A refactor is ongoing to make the three coordinate systems easier to understand and convert between each other.

tensor
Float matrix of N x box_dim.

Type torch.Tensor

box_dim
Integer indicates the dimension of a box Each row is (x, y, z, x_size, y_size, z_size, yaw, . . . ).

Type int

with_yaw
If True, the value of yaw will be set to 0 as minmax boxes.

Type bool

convert_to(dst, rt_mat=None)
Convert self to dst mode.

Parameters
• dst (Box3DMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.
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Returns The converted box of the same type in the dst mode.

Return type DepthInstance3DBoxes
property corners

Coordinates of corners of all the boxes in shape (N, 8, 3).

Convert the boxes to corners in clockwise order, in form of (x0y0z0, x0y0z1, x0y1z1, x0y1z0,
x1y0z0, x1y0z1, x1y1z1, x1y1z0)

up z
front y ^

/ |
/ |

(x0, y1, z1) + ----------- + (x1, y1, z1)
/| / |
/ | / |

(x0, y0, z1) + ----------- + + (x1, y1, z0)
| / . | /
| / origin | /

(x0, y0, z0) + ----------- + --------> right x
(x1, y0, z0)

Type torch.Tensor

enlarged_box(extra_width)
Enlarge the length, width and height boxes.

Parameters extra_width (float | torch.Tensor) – Extra width to enlarge the box.

Returns Enlarged boxes.

Return type DepthInstance3DBoxes
flip(bev_direction='horizontal', points=None)

Flip the boxes in BEV along given BEV direction.

In Depth coordinates, it flips x (horizontal) or y (vertical) axis.

Parameters
• bev_direction (str, optional) – Flip direction (horizontal or vertical). Defaults to

‘horizontal’.

• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to flip. Defaults to
None.

Returns Flipped points.

Return type torch.Tensor, numpy.ndarray or None

get_surface_line_center()
Compute surface and line center of bounding boxes.

Returns Surface and line center of bounding boxes.

Return type torch.Tensor

property gravity_center
A tensor with center of each box in shape (N, 3).

Type torch.Tensor
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rotate(angle, points=None)
Rotate boxes with points (optional) with the given angle or rotation matrix.

Parameters
• angle (float | torch.Tensor | np.ndarray) – Rotation angle or rotation matrix.

• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to rotate. Defaults to
None.

Returns
When points is None, the function returns None, otherwise it returns the rotated points

and the rotation matrix rot_mat_T.

Return type tuple or None

class mmdet3d.structures.bbox_3d.LiDARInstance3DBoxes(tensor, box_dim=7, with_yaw=True,
origin=(0.5, 0.5, 0))

3D boxes of instances in LIDAR coordinates.

Coordinates in LiDAR:

up z x front (yaw=0)
^ ^
| /
| /

(yaw=0.5*pi) left y <------ 0

The relative coordinate of bottom center in a LiDAR box is (0.5, 0.5, 0), and the yaw is around the z axis, thus
the rotation axis=2. The yaw is 0 at the positive direction of x axis, and increases from the positive direction of
x to the positive direction of y.

A refactor is ongoing to make the three coordinate systems easier to understand and convert between each other.

tensor
Float matrix of N x box_dim.

Type torch.Tensor

box_dim
Integer indicating the dimension of a box. Each row is (x, y, z, x_size, y_size, z_size, yaw, . . . ).

Type int

with_yaw
If True, the value of yaw will be set to 0 as minmax boxes.

Type bool

convert_to(dst, rt_mat=None, correct_yaw=False)
Convert self to dst mode.

Parameters
• dst (Box3DMode) – the target Box mode

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

• correct_yaw (bool) – If convert the yaw angle to the target coordinate. Defaults to False.
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Returns The converted box of the same type in the dst mode.

Return type BaseInstance3DBoxes
property corners

Coordinates of corners of all the boxes in shape (N, 8, 3).

Convert the boxes to corners in clockwise order, in form of (x0y0z0, x0y0z1, x0y1z1, x0y1z0,
x1y0z0, x1y0z1, x1y1z1, x1y1z0)

up z
front x ^

/ |
/ |

(x1, y0, z1) + ----------- + (x1, y1, z1)
/| / |
/ | / |

(x0, y0, z1) + ----------- + + (x1, y1, z0)
| / . | /
| / origin | /

left y<-------- + ----------- + (x0, y1, z0)
(x0, y0, z0)

Type torch.Tensor

enlarged_box(extra_width)
Enlarge the length, width and height boxes.

Parameters extra_width (float | torch.Tensor) – Extra width to enlarge the box.

Returns Enlarged boxes.

Return type LiDARInstance3DBoxes
flip(bev_direction='horizontal', points=None)

Flip the boxes in BEV along given BEV direction.

In LIDAR coordinates, it flips the y (horizontal) or x (vertical) axis.

Parameters
• bev_direction (str) – Flip direction (horizontal or vertical).

• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to flip. Defaults to
None.

Returns Flipped points.

Return type torch.Tensor, numpy.ndarray or None

property gravity_center
A tensor with center of each box in shape (N, 3).

Type torch.Tensor

rotate(angle, points=None)
Rotate boxes with points (optional) with the given angle or rotation matrix.

Parameters
• angles (float | torch.Tensor | np.ndarray) – Rotation angle or rotation matrix.
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• points (torch.Tensor | np.ndarray | BasePoints, optional) – Points to rotate. Defaults to
None.

Returns
When points is None, the function returns None, otherwise it returns the rotated points

and the rotation matrix rot_mat_T.

Return type tuple or None

mmdet3d.structures.bbox_3d.get_box_type(box_type)
Get the type and mode of box structure.

Parameters box_type (str) – The type of box structure. The valid value are “LiDAR”, “Camera”,
or “Depth”.

Raises ValueError – A ValueError is raised when box_type does not belong to the three valid types.

Returns Box type and box mode.

Return type tuple

mmdet3d.structures.bbox_3d.get_proj_mat_by_coord_type(img_meta, coord_type)
Obtain image features using points.

Parameters
• img_meta (dict) – Meta info.

• coord_type (str) – ‘DEPTH’ or ‘CAMERA’ or ‘LIDAR’. Can be case-insensitive.

Returns transformation matrix.

Return type torch.Tensor

mmdet3d.structures.bbox_3d.limit_period(val, offset=0.5, period=3.141592653589793)
Limit the value into a period for periodic function.

Parameters
• val (torch.Tensor | np.ndarray) – The value to be converted.

• offset (float, optional) – Offset to set the value range. Defaults to 0.5.

• period ([type], optional) – Period of the value. Defaults to np.pi.

Returns
Value in the range of [-offset * period, (1-offset) * period]

Return type (torch.Tensor | np.ndarray)

mmdet3d.structures.bbox_3d.mono_cam_box2vis(cam_box)
This is a post-processing function on the bboxes from Mono-3D task. If we want to perform projection visual-
ization, we need to:

1. rotate the box along x-axis for np.pi / 2 (roll)

2. change orientation from local yaw to global yaw

3. convert yaw by (np.pi / 2 - yaw)

After applying this function, we can project and draw it on 2D images.

Parameters cam_box (CameraInstance3DBoxes) – 3D bbox in camera coordinate system before
conversion. Could be gt bbox loaded from dataset or network prediction output.

Returns Box after conversion.
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Return type CameraInstance3DBoxes
mmdet3d.structures.bbox_3d.points_cam2img(points_3d, proj_mat, with_depth=False)

Project points in camera coordinates to image coordinates.

Parameters
• points_3d (torch.Tensor | np.ndarray) – Points in shape (N, 3)

• proj_mat (torch.Tensor | np.ndarray) – Transformation matrix between coordinates.

• with_depth (bool, optional) – Whether to keep depth in the output. Defaults to False.

Returns
Points in image coordinates, with shape [N, 2] if with_depth=False, else [N, 3].

Return type (torch.Tensor | np.ndarray)

mmdet3d.structures.bbox_3d.points_img2cam(points, cam2img)
Project points in image coordinates to camera coordinates.

Parameters
• points (torch.Tensor) – 2.5D points in 2D images, [N, 3], 3 corresponds with x, y in the

image and depth.

• cam2img (torch.Tensor) – Camera intrinsic matrix. The shape can be [3, 3], [3, 4] or [4,
4].

Returns
points in 3D space. [N, 3], 3 corresponds with x, y, z in 3D space.

Return type torch.Tensor

mmdet3d.structures.bbox_3d.rotation_3d_in_axis(points, angles, axis=0, return_mat=False,
clockwise=False)

Rotate points by angles according to axis.

Parameters
• points (np.ndarray | torch.Tensor | list | tuple) – Points of shape (N, M, 3).

• angles (np.ndarray | torch.Tensor | list | tuple | float) – Vector of angles
in shape (N,)

• axis (int, optional) – The axis to be rotated. Defaults to 0.

• return_mat – Whether or not return the rotation matrix (transposed). Defaults to False.

• clockwise – Whether the rotation is clockwise. Defaults to False.

Raises ValueError – when the axis is not in range [0, 1, 2], it will raise value error.

Returns Rotated points in shape (N, M, 3).

Return type (torch.Tensor | np.ndarray)

mmdet3d.structures.bbox_3d.xywhr2xyxyr(boxes_xywhr)
Convert a rotated boxes in XYWHR format to XYXYR format.

Parameters boxes_xywhr (torch.Tensor | np.ndarray) – Rotated boxes in XYWHR format.

Returns Converted boxes in XYXYR format.

Return type (torch.Tensor | np.ndarray)
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24.3 ops

24.4 points

class mmdet3d.structures.points.BasePoints(tensor, points_dim=3, attribute_dims=None)
Base class for Points.

Parameters
• tensor (torch.Tensor | np.ndarray | list) – a N x points_dim matrix.

• points_dim (int, optional) – Number of the dimension of a point. Each row is (x, y,
z). Defaults to 3.

• attribute_dims (dict, optional) – Dictionary to indicate the meaning of extra dimen-
sion. Defaults to None.

tensor
Float matrix of N x points_dim.

Type torch.Tensor

points_dim
Integer indicating the dimension of a point. Each row is (x, y, z, . . . ).

Type int

attribute_dims
Dictionary to indicate the meaning of extra dimension. Defaults to None.

Type bool

rotation_axis
Default rotation axis for points rotation.

Type int

property bev
BEV of the points in shape (N, 2).

Type torch.Tensor

classmethod cat(points_list)
Concatenate a list of Points into a single Points.

Parameters points_list (list[BasePoints]) – List of points.

Returns The concatenated Points.

Return type BasePoints
clone()

Clone the Points.

Returns
Box object with the same properties as self.

Return type BasePoints
property color

torch.Tensor: A vector with color of each point in shape (N, 3), or None.
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abstract convert_to(dst, rt_mat=None)
Convert self to dst mode.

Parameters
• dst (CoordMode) – The target Box mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns
The converted box of the same type in the dst mode.

Return type BasePoints
property coord

Coordinates of each point in shape (N, 3).

Type torch.Tensor

property device
The device of the points are on.

Type str

abstract flip(bev_direction='horizontal')
Flip the points along given BEV direction.

Parameters bev_direction (str) – Flip direction (horizontal or vertical).

property height
torch.Tensor: A vector with height of each point in shape (N, 1), or None.

in_range_3d(point_range)
Check whether the points are in the given range.

Parameters point_range (list | torch.Tensor) – The range of point (x_min, y_min,
z_min, x_max, y_max, z_max)

Note: In the original implementation of SECOND, checking whether a box in the range checks whether
the points are in a convex polygon, we try to reduce the burden for simpler cases.

Returns
A binary vector indicating whether each point is inside the reference range.

Return type torch.Tensor

in_range_bev(point_range)
Check whether the points are in the given range.

Parameters point_range (list | torch.Tensor) – The range of point in order of (x_min,
y_min, x_max, y_max).

Returns
Indicating whether each point is inside the reference range.

Return type torch.Tensor
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new_point(data)
Create a new point object with data.

The new point and its tensor has the similar properties as self and self.tensor, respectively.

Parameters data (torch.Tensor | numpy.array | list) – Data to be copied.

Returns
A new point object with data, the object’s other properties are similar to self.

Return type BasePoints

rotate(rotation, axis=None)
Rotate points with the given rotation matrix or angle.

Parameters
• rotation (float | np.ndarray | torch.Tensor) – Rotation matrix or angle.

• axis (int, optional) – Axis to rotate at. Defaults to None.

scale(scale_factor)
Scale the points with horizontal and vertical scaling factors.

Parameters scale_factors (float) – Scale factors to scale the points.

property shape
Shape of points.

Type torch.Shape

shuffle()
Shuffle the points.

Returns The shuffled index.

Return type torch.Tensor

to(device)
Convert current points to a specific device.

Parameters device (str | torch.device) – The name of the device.

Returns
A new boxes object on the specific device.

Return type BasePoints
translate(trans_vector)

Translate points with the given translation vector.

Parameters trans_vector (np.ndarray, torch.Tensor) – Translation vector of size 3 or
nx3.

class mmdet3d.structures.points.CameraPoints(tensor, points_dim=3, attribute_dims=None)
Points of instances in CAM coordinates.

Parameters
• tensor (torch.Tensor | np.ndarray | list) – a N x points_dim matrix.

• points_dim (int, optional) – Number of the dimension of a point. Each row is (x, y,
z). Defaults to 3.
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• attribute_dims (dict, optional) – Dictionary to indicate the meaning of extra dimen-
sion. Defaults to None.

tensor
Float matrix of N x points_dim.

Type torch.Tensor

points_dim
Integer indicating the dimension of a point. Each row is (x, y, z, . . . ).

Type int

attribute_dims
Dictionary to indicate the meaning of extra dimension. Defaults to None.

Type bool

rotation_axis
Default rotation axis for points rotation.

Type int

property bev
BEV of the points in shape (N, 2).

Type torch.Tensor

convert_to(dst, rt_mat=None)
Convert self to dst mode.

Parameters
• dst (CoordMode) – The target Point mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns
The converted point of the same type in the dst mode.

Return type BasePoints
flip(bev_direction='horizontal')

Flip the points along given BEV direction.

Parameters bev_direction (str) – Flip direction (horizontal or vertical).

class mmdet3d.structures.points.DepthPoints(tensor, points_dim=3, attribute_dims=None)
Points of instances in DEPTH coordinates.

Parameters
• tensor (torch.Tensor | np.ndarray | list) – a N x points_dim matrix.

• points_dim (int, optional) – Number of the dimension of a point. Each row is (x, y,
z). Defaults to 3.

• attribute_dims (dict, optional) – Dictionary to indicate the meaning of extra dimen-
sion. Defaults to None.

tensor
Float matrix of N x points_dim.
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Type torch.Tensor

points_dim
Integer indicating the dimension of a point. Each row is (x, y, z, . . . ).

Type int

attribute_dims
Dictionary to indicate the meaning of extra dimension. Defaults to None.

Type bool

rotation_axis
Default rotation axis for points rotation.

Type int

convert_to(dst, rt_mat=None)
Convert self to dst mode.

Parameters
• dst (CoordMode) – The target Point mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns
The converted point of the same type in the dst mode.

Return type BasePoints
flip(bev_direction='horizontal')

Flip the points along given BEV direction.

Parameters bev_direction (str) – Flip direction (horizontal or vertical).

class mmdet3d.structures.points.LiDARPoints(tensor, points_dim=3, attribute_dims=None)
Points of instances in LIDAR coordinates.

Parameters
• tensor (torch.Tensor | np.ndarray | list) – a N x points_dim matrix.

• points_dim (int, optional) – Number of the dimension of a point. Each row is (x, y,
z). Defaults to 3.

• attribute_dims (dict, optional) – Dictionary to indicate the meaning of extra dimen-
sion. Defaults to None.

tensor
Float matrix of N x points_dim.

Type torch.Tensor

points_dim
Integer indicating the dimension of a point. Each row is (x, y, z, . . . ).

Type int

attribute_dims
Dictionary to indicate the meaning of extra dimension. Defaults to None.

Type bool
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rotation_axis
Default rotation axis for points rotation.

Type int

convert_to(dst, rt_mat=None)
Convert self to dst mode.

Parameters
• dst (CoordMode) – The target Point mode.

• rt_mat (np.ndarray | torch.Tensor, optional) – The rotation and translation ma-
trix between different coordinates. Defaults to None. The conversion from src coordinates
to dst coordinates usually comes along the change of sensors, e.g., from camera to LiDAR.
This requires a transformation matrix.

Returns
The converted point of the same type in the dst mode.

Return type BasePoints
flip(bev_direction='horizontal')

Flip the points along given BEV direction.

Parameters bev_direction (str) – Flip direction (horizontal or vertical).
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CHAPTER

TWENTYSEVEN

MMDET3D.UTILS

class mmdet3d.utils.ArrayConverter(template_array: Optional[Union[tuple, list, int, float, numpy.ndarray,
torch.Tensor]] = None)

Utility class for data-type agnostic processing.

Parameters (tuple | list | int | float | np.ndarray | (template_array) –
torch.Tensor, optional): template array. Defaults to None.

convert(input_array: Union[tuple, list, int, float, numpy.ndarray, torch.Tensor], target_type: Optional[type]
= None, target_array: Optional[Union[numpy.ndarray, torch.Tensor]] = None)→
Union[numpy.ndarray, torch.Tensor]

Convert input array to target data type.

Parameters (tuple | list | int | float | np.ndarray | (input_array) –
torch.Tensor): Input array.

:param target_type (np.ndarray or torch.Tensor: optional): Type to which input array is converted.
Defaults to None.

:param [optional): Type to which input array is converted.] Defaults to None.

Parameters target_array (np.ndarray | torch.Tensor, optional) – Template array
to which input array is converted. Defaults to None.

Raises
• ValueError – If input is list or tuple and cannot be converted to to a NumPy array, a

ValueError is raised.

• TypeError – If input type does not belong to the above range, or the contents of a list or
tuple do not share the same data type, a TypeError is raised.

Returns The converted array.

Return type np.ndarray or torch.Tensor

recover(input_array: Union[numpy.ndarray, torch.Tensor])→ Union[numpy.ndarray, torch.Tensor]
Recover input type to original array type.

Parameters input_array (np.ndarray | torch.Tensor) – Input array.

Returns Converted array.

Return type np.ndarray or torch.Tensor

set_template(array: Union[tuple, list, int, float, numpy.ndarray, torch.Tensor])→ None
Set template array.
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Parameters array (tuple | list | int | float | np.ndarray | torch.Tensor) –
Template array.

Raises
• ValueError – If input is list or tuple and cannot be converted to to a NumPy array, a

ValueError is raised.

• TypeError – If input type does not belong to the above range, or the contents of a list or
tuple do not share the same data type, a TypeError is raised.

mmdet3d.utils.array_converter(to_torch: bool = True, apply_to: Tuple[str, ...] = (), template_arg_name_:
Optional[str] = None, recover: bool = True)→ Callable

Wrapper function for data-type agnostic processing.

First converts input arrays to PyTorch tensors or NumPy ndarrays for middle calculation, then convert output to
original data-type if recover=True.

Parameters
• to_torch (bool) – Whether convert to PyTorch tensors for middle calculation. Defaults to

True.

• apply_to (Tuple[str, ...]) – The arguments to which we apply data-type conversion.
Defaults to an empty tuple.

• template_arg_name (str, optional) – Argument serving as the template ( return arrays
should have the same dtype and device as the template). Defaults to None. If None, we will
use the first argument in apply_to as the template argument.

• recover (bool) – Whether or not recover the wrapped function outputs to the tem-
plate_arg_name_ type. Defaults to True.

Raises
• ValueError – When template_arg_name_ is not among all args, or when apply_to con-

tains an arg which is not among all args, a ValueError will be raised. When the template
argument or an argument to convert is a list or tuple, and cannot be converted to a NumPy
array, a ValueError will be raised.

• TypeError – When the type of the template argument or an argument to convert does not
belong to the above range, or the contents of such an list-or-tuple-type argument do not share
the same data type, a TypeError is raised.

Returns wrapped function.

Return type (function)

Example

>>> import torch
>>> import numpy as np
>>>
>>> # Use torch addition for a + b,
>>> # and convert return values to the type of a
>>> @array_converter(apply_to=('a', 'b'))
>>> def simple_add(a, b):
>>> return a + b
>>>
>>> a = np.array([1.1])

(continues on next page)
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(continued from previous page)

>>> b = np.array([2.2])
>>> simple_add(a, b)
>>>
>>> # Use numpy addition for a + b,
>>> # and convert return values to the type of b
>>> @array_converter(to_torch=False, apply_to=('a', 'b'),
>>> template_arg_name_='b')
>>> def simple_add(a, b):
>>> return a + b
>>>
>>> simple_add()
>>>
>>> # Use torch funcs for floor(a) if flag=True else ceil(a),
>>> # and return the torch tensor
>>> @array_converter(apply_to=('a',), recover=False)
>>> def floor_or_ceil(a, flag=True):
>>> return torch.floor(a) if flag else torch.ceil(a)
>>>
>>> floor_or_ceil(a, flag=False)

mmdet3d.utils.collect_env()
Collect the information of the running environments.

mmdet3d.utils.compat_cfg(cfg)
This function would modify some filed to keep the compatibility of config.

For example, it will move some args which will be deprecated to the correct fields.

mmdet3d.utils.register_all_modules(init_default_scope: bool = True)→ None
Register all modules in mmdet3d into the registries.

Parameters init_default_scope (bool) – Whether initialize the mmdet default scope. When
init_default_scope=True, the global default scope will be set to mmdet3d, and all registries will
build modules from mmdet3d’s registry node. To understand more about the registry, please refer
to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults
to True.

mmdet3d.utils.setup_multi_processes(cfg)
Setup multi-processing environment variables.

193

https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md


mmcv Documentation, Release 1.1.0

194 Chapter 27. mmdet3d.utils



CHAPTER

TWENTYEIGHT

MODEL ZOO

28.1 Common settings

• We use distributed training.

• For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.
max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.

• We report the inference time as the total time of network forwarding and post-processing, excluding the data
loading time. Results are obtained with the script benchmark.py which computes the average time on 2000
images.

28.2 Baselines

28.2.1 SECOND

Please refer to SECOND for details. We provide SECOND baselines on KITTI and Waymo datasets.

28.2.2 PointPillars

Please refer to PointPillars for details. We provide pointpillars baselines on KITTI, nuScenes, Lyft, and Waymo datasets.

28.2.3 Part-A2

Please refer to Part-A2 for details.

28.2.4 VoteNet

Please refer to VoteNet for details. We provide VoteNet baselines on ScanNet and SUNRGBD datasets.
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28.2.5 Dynamic Voxelization

Please refer to Dynamic Voxelization for details.

28.2.6 MVXNet

Please refer to MVXNet for details.

28.2.7 RegNetX

Please refer to RegNet for details. We provide pointpillars baselines with RegNetX backbones on nuScenes and Lyft
datasets currently.

28.2.8 nuImages

We also support baseline models on nuImages dataset. Please refer to nuImages for details. We report Mask R-CNN,
Cascade Mask R-CNN and HTC results currently.

28.2.9 H3DNet

Please refer to H3DNet for details.

28.2.10 3DSSD

Please refer to 3DSSD for details.

28.2.11 CenterPoint

Please refer to CenterPoint for details.

28.2.12 SSN

Please refer to SSN for details. We provide pointpillars with shape-aware grouping heads used in SSN on the nuScenes
and Lyft datasets currently.

28.2.13 ImVoteNet

Please refer to ImVoteNet for details. We provide ImVoteNet baselines on SUNRGBD dataset.
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28.2.14 FCOS3D

Please refer to FCOS3D for details. We provide FCOS3D baselines on the nuScenes dataset.

28.2.15 PointNet++

Please refer to PointNet++ for details. We provide PointNet++ baselines on ScanNet and S3DIS datasets.

28.2.16 Group-Free-3D

Please refer to Group-Free-3D for details. We provide Group-Free-3D baselines on ScanNet dataset.

28.2.17 ImVoxelNet

Please refer to ImVoxelNet for details. We provide ImVoxelNet baselines on KITTI dataset.

28.2.18 PAConv

Please refer to PAConv for details. We provide PAConv baselines on S3DIS dataset.

28.2.19 DGCNN

Please refer to DGCNN for details. We provide DGCNN baselines on S3DIS dataset.

28.2.20 SMOKE

Please refer to SMOKE for details. We provide SMOKE baselines on KITTI dataset.

28.2.21 PGD

Please refer to PGD for details. We provide PGD baselines on KITTI and nuScenes dataset.

28.2.22 PointRCNN

Please refer to PointRCNN for details. We provide PointRCNN baselines on KITTI dataset.

28.2.23 MonoFlex

Please refer to MonoFlex for details. We provide MonoFlex baselines on KITTI dataset.
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28.2.24 SA-SSD

Please refer to SA-SSD for details. We provide SA-SSD baselines on the KITTI dataset.

28.2.25 FCAF3D

Please refer to FCAF3D for details. We provide FCAF3D baselines on the ScanNet, S3DIS, and SUN RGB-D datasets.

28.2.26 PV-RCNN

Please refer to PV-RCNN for details. We provide PV-RCNN baselines on the KITTI dataset.

28.2.27 Mixed Precision (FP16) Training

Please refer to Mixed Precision (FP16) Training on PointPillars for details.
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TWENTYNINE

BENCHMARKS

Here we benchmark the training and testing speed of models in MMDetection3D, with some other open source 3D
detection codebases.

29.1 Settings

• Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

• Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.

• Model: Since all the other codebases implements different models, we compare the corresponding models in-
cluding SECOND, PointPillars, Part-A2, and VoteNet with them separately.

• Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of
each epoch to skip GPU warmup time.

29.2 Main Results

We compare the training speed (samples/s) with other codebases if they implement the similar models. The results are
as below, the greater the numbers in the table, the faster of the training process. The models that are not supported by
other codebases are marked by ×.

29.3 Details of Comparison

29.3.1 Modification for Calculating Speed

• MMDetection3D: We try to use as similar settings as those of other codebases as possible using benchmark
configs.

• Det3D: For comparison with Det3D, we use the commit 519251e.

• OpenPCDet: For comparison with OpenPCDet, we use the commit b32fbddb.

For training speed, we add code to record the running time in the file ./tools/train_utils/train_utils.
py. We calculate the speed of each epoch, and report the average speed of all the epochs.

diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
index 91f21dd..021359d 100644
--- a/tools/train_utils/train_utils.py

(continues on next page)
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(continued from previous page)

+++ b/tools/train_utils/train_utils.py
@@ -2,6 +2,7 @@ import torch
import os
import glob
import tqdm
+import datetime
from torch.nn.utils import clip_grad_norm_

@@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func,␣
→˓lr_scheduler, ac

if rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train',

→˓ dynamic_ncols=True)

+ start_time = None
for cur_it in range(total_it_each_epoch):

+ if cur_it > 49 and start_time is None:
+ start_time = datetime.datetime.now()

try:
batch = next(dataloader_iter)

except StopIteration:
@@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func,␣
→˓lr_scheduler, ac

tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
for key, val in tb_dict.items():

tb_log.add_scalar('train_' + key, val, accumulated_iter)
+ endtime = datetime.datetime.now()
+ speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)

if rank == 0:
pbar.close()

- return accumulated_iter
+ return accumulated_iter, speed

def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
→˓cfg,
@@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_
→˓scheduler, optim_

lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_
→˓num=50,

merge_all_iters_to_one_epoch=False):
accumulated_iter = start_iter

+ speeds = []
with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True,␣

→˓leave=(rank == 0)) as tbar:
total_it_each_epoch = len(train_loader)
if merge_all_iters_to_one_epoch:

@@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_
→˓scheduler, optim_

cur_scheduler = lr_warmup_scheduler
else:

(continues on next page)
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cur_scheduler = lr_scheduler
- accumulated_iter = train_one_epoch(
+ accumulated_iter, speed = train_one_epoch(

model, optimizer, train_loader, model_func,
lr_scheduler=cur_scheduler,
accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,

@@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_
→˓scheduler, optim_

total_it_each_epoch=total_it_each_epoch,
dataloader_iter=dataloader_iter

)
-
+ speeds.append(speed)

# save trained model
trained_epoch = cur_epoch + 1
if trained_epoch % ckpt_save_interval == 0 and rank == 0:

@@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_
→˓scheduler, optim_

save_checkpoint(
checkpoint_state(model, optimizer, trained_epoch, accumulated_

→˓iter), filename=ckpt_name,
)

+ print(speed)
+ print(f'*******{sum(speeds) / len(speeds)}******')

def model_state_to_cpu(model_state):

29.3.2 VoteNet

• MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/votenet/votenet_8xb16_sunrgbd-3d.py 8 --no-validate

• votenet: At commit 2f6d6d3, run

python train.py --dataset sunrgbd --batch_size 16

Then benchmark the test speed by running

python eval.py --dataset sunrgbd --checkpoint_path log_sunrgbd/checkpoint.tar --
→˓batch_size 1 --dump_dir eval_sunrgbd --cluster_sampling seed_fps --use_3d_nms --
→˓use_cls_nms --per_class_proposal

Note that eval.py is modified to compute inference time.

diff --git a/eval.py b/eval.py
index c0b2886..04921e9 100644
--- a/eval.py
+++ b/eval.py
@@ -10,6 +10,7 @@ import os

(continues on next page)
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import sys
import numpy as np
from datetime import datetime

+import time
import argparse
import importlib
import torch

@@ -28,7 +29,7 @@ parser.add_argument('--checkpoint_path', default=None, help=
→˓'Model checkpoint pa

parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample␣
→˓outputs [default: None]')

parser.add_argument('--num_point', type=int, default=20000, help='Point Number␣
→˓[default: 20000]')

parser.add_argument('--num_target', type=int, default=256, help='Point Number␣
→˓[default: 256]')
-parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during␣

→˓training [default: 8]')
+parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during␣

→˓training [default: 8]')
parser.add_argument('--vote_factor', type=int, default=1, help='Number of votes␣

→˓generated from each seed [default: 1]')
parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling␣

→˓strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
parser.add_argument('--ap_iou_thresholds', default='0.25,0.5', help='A list of␣

→˓AP IoU thresholds [default: 0.25,0.5]')
@@ -132,6 +133,7 @@ CONFIG_DICT = {'remove_empty_box': (not FLAGS.faster_eval),

→˓'use_3d_nms': FLAGS.
# -------------------------------------------------------------------------␣

→˓GLOBAL CONFIG END

def evaluate_one_epoch():
+ time_list = list()

stat_dict = {}
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \

for iou_thresh in AP_IOU_THRESHOLDS]
@@ -144,6 +146,8 @@ def evaluate_one_epoch():

# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}

+ torch.cuda.synchronize()
+ start_time = time.perf_counter()

with torch.no_grad():
end_points = net(inputs)

@@ -161,6 +165,12 @@ def evaluate_one_epoch():

batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)

+ torch.cuda.synchronize()
+ elapsed = time.perf_counter() - start_time
+ time_list.append(elapsed)
+

(continues on next page)
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+ if len(time_list==200):
+ print("average inference time: %4f"%(sum(time_list[5:])/len(time_

→˓list[5:])))
for ap_calculator in ap_calculator_list:

ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)

29.3.3 PointPillars-car

• MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-
→˓3d-car.py 8 --no-validate

• Det3D: At commit 519251e, use kitti_point_pillars_mghead_syncbn.py and run

./tools/scripts/train.sh --launcher=slurm --gpus=8

Note that the config in train.sh is modified to train point pillars.

diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh
index 3a93f95..461e0ea 100755
--- a/tools/scripts/train.sh
+++ b/tools/scripts/train.sh
@@ -16,9 +16,9 @@ then
fi

# Voxelnet
-python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/
→˓second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=
→˓$SECOND_WORK_DIR
+# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/
→˓second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=
→˓$SECOND_WORK_DIR
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/
→˓cbgs/configs/ nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=
→˓$NUSC_CBGS_WORK_DIR
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/
→˓second/configs/ lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_
→˓dir=$LYFT_CBGS_WORK_DIR

# PointPillars
-# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./
→˓examples/point_pillars/configs/ original_pp_mghead_syncbn_kitti.py --work_dir=
→˓$PP_WORK_DIR
+python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/
→˓point_pillars/configs/ kitti_point_pillars_mghead_syncbn.py
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29.3.4 PointPillars-3class

• MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-
→˓3d-3class.py 8 --no-validate

• OpenPCDet: At commit b32fbddb, run

cd tools
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_
→˓models/pointpillar.yaml --batch_size 32 --workers 32 --epochs 80

29.3.5 SECOND

For SECOND, we mean the SECONDv1.5 that was first implemented in second.Pytorch. Det3D’s implementation of
SECOND uses its self-implemented Multi-Group Head, so its speed is not compatible with other codebases.

• MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-
→˓3class.py 8 --no-validate

• OpenPCDet: At commit b32fbddb, run

cd tools
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_
→˓models/second.yaml --batch_size 32 --workers 32 --epochs 80

29.3.6 Part-A2

• MMDetection3D: With release v0.1.0, run

./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-
→˓3d-3class.py 8 --no-validate

• OpenPCDet: At commit b32fbddb, train the model by running

cd tools
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_
→˓models/PartA2.yaml --batch_size 32 --workers 32 --epochs 80
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CHANGELOG OF V1.0.X

30.1 v1.0.0 (6/4/2023)

30.1.1 Improvements

• Add BN in FPN to avoid loss Nan in MVXNet (#2282)

• Update s3dis_data_utils.py (#2232)

30.1.2 Bug Fixes

• Fix precision error when using mixed precision on CenterPoint (#2341)

• Replace np.transpose with torch.permute to speed up (@2273)

• Update links of SECOND checkpoints (#2185)

30.1.3 Contributors

A total of 7 developers contributed to this release. @JingweiZhang12, @ZCMax, @Xiangxu-0103, @vansinhu,
@cs1488, @sunjiahao1999, @Ginray

30.2 v1.0.0rc7 (7/1/2023)

30.2.1 Improvements

• Support training and testing on MLU (#2167)

30.2.2 Contributors

A total of 1 developers contributed to this release. @mengpenghui
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30.3 v1.0.0rc6 (2/12/2022)

30.3.1 New Features

• Add Projects/ folder and the first example project (#2082)

30.3.2 Improvements

• Update Waymo converter to save storage space (#1759)

• Update model link and performance of CenterPoint (#1916)

30.3.3 Bug Fixes

• Fix GPU memory occupancy problem in PointRCNN (#1928)

• Fix sampling bug in IoUNegPiecewiseSampler (#2018)

30.3.4 Contributors

A total of 6 developers contributed to this release.

@oyel, @zzj403, @VVsssssk, @Tai-Wang, @tpoisonooo, @JingweiZhang12, @ZCMax

30.4 v1.0.0rc5 (11/10/2022)

30.4.1 New Features

• Support ImVoxelNet on SUN RGB-D (#1738)

30.4.2 Improvements

• Fix the cross-codebase reference problem in metafile README (#1644)

• Update the Chinese documentation about getting started (#1715)

• Fix docs link and add docs link checker (#1811)

30.4.3 Bug Fixes

• Fix a visualization bug that is potentially triggered by empty prediction labels (#1725)

• Fix point cloud segmentation visualization bug due to wrong parameter passing (#1858)

• Fix Nan loss bug during PointRCNN training (#1874)
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30.4.4 Contributors

A total of 9 developers contributed to this release.

@ZwwWayne, @Tai-Wang, @filaPro, @VVsssssk, @ZCMax, @Xiangxu-0103, @holtvogt, @tpoisonooo, @lian-
qing01

30.5 v1.0.0rc4 (8/8/2022)

30.5.1 Highlights

• Support FCAF3D

30.5.2 New Features

• Support FCAF3D (#1547)

• Add the transformation to support multi-camera 3D object detection (#1580)

• Support lift-splat-shoot view transformer (#1598)

30.5.3 Improvements

• Remove the limitation of the maximum number of points during SUN RGB-D preprocessing (#1555)

• Support circle CI (#1647)

• Add mim to extras_require in setup.py (#1560, #1574)

• Update dockerfile package version (#1697)

30.5.4 Bug Fixes

• Flip yaw angle for DepthInstance3DBoxes.overlaps (#1548, #1556)

• Fix DGCNN configs (#1587)

• Fix bbox head not registered bug (#1625)

• Fix missing objects in S3DIS preprocessing (#1665)

• Fix spconv2.0 model loading bug (#1699)

30.5.5 Contributors

A total of 9 developers contributed to this release.

@Tai-Wang, @ZwwWayne, @filaPro, @lianqing11, @ZCMax, @HuangJunJie2017, @Xiangxu-0103, @Chong-
haoSima, @VVsssssk
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30.6 v1.0.0rc3 (8/6/2022)

30.6.1 Highlights

• Support SA-SSD

30.6.2 New Features

• Support SA-SSD (#1337)

30.6.3 Improvements

• Add Chinese documentation for vision-only 3D detection (#1438)

• Update CenterPoint pretrained models that are compatible with refactored coordinate systems (#1450)

• Configure myst-parser to parse anchor tag in the documentation (#1488)

• Replace markdownlint with mdformat for avoiding installing ruby (#1489)

• Add missing gt_names when getting annotation info in Custom3DDataset (#1519)

• Support S3DIS full ceph training (#1542)

• Rewrite the installation and FAQ documentation (#1545)

30.6.4 Bug Fixes

• Fix the incorrect registry name when building RoI extractors (#1460)

• Fix the potential problems caused by the registry scope update when composing pipelines (#1466) and using
CocoDataset (#1536)

• Fix the missing selection with order in the box3d_nms introduced by #1403 (#1479)

• Update the PointPillars config to make it consistent with the log (#1486)

• Fix heading anchor in documentation (#1490)

• Fix the compatibility of mmcv in the dockerfile (#1508)

• Make overwrite_spconv packaged when building whl (#1516)

• Fix the requirement of mmcv and mmdet (#1537)

• Update configs of PartA2 and support its compatibility with spconv 2.0 (#1538)
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30.6.5 Contributors

A total of 13 developers contributed to this release.

@Xiangxu-0103, @ZCMax, @jshilong, @filaPro, @atinfinity, @Tai-Wang, @wenbo-yu, @yi-chen-isuzu,
@ZwwWayne, @wchen61, @VVsssssk, @AlexPasqua, @lianqing11

30.7 v1.0.0rc2 (1/5/2022)

30.7.1 Highlights

• Support spconv 2.0

• Support MinkowskiEngine with MinkResNet

• Support training models on custom datasets with only point clouds

• Update Registry to distinguish the scope of built functions

• Replace mmcv.iou3d with a set of bird-eye-view (BEV) operators to unify the operations of rotated boxes

30.7.2 New Features

• Add loader arguments in the configuration files (#1388)

• Support spconv 2.0 when the package is installed. Users can still use spconv 1.x in MMCV with CUDA 9.0 (only
cost more memory) without losing the compatibility of model weights between two versions (#1421)

• Support MinkowskiEngine with MinkResNet (#1422)

30.7.3 Improvements

• Add the documentation for model deployment (#1373, #1436)

• Add Chinese documentation of

– Speed benchmark (#1379)

– LiDAR-based 3D detection (#1368)

– LiDAR 3D segmentation (#1420)

– Coordinate system refactoring (#1384)

• Support training models on custom datasets with only point clouds (#1393)

• Replace mmcv.iou3d with a set of bird-eye-view (BEV) operators to unify the operations of rotated boxes (#1403,
#1418)

• Update Registry to distinguish the scope of building functions (#1412, #1443)

• Replace recommonmark with myst_parser for documentation rendering (#1414)
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30.7.4 Bug Fixes

• Fix the show pipeline in the browse_dataset.py (#1376)

• Fix missing init files after coordinate system refactoring (#1383)

• Fix the incorrect yaw in the visualization caused by coordinate system refactoring (#1407)

• Fix NaiveSyncBatchNorm1d and NaiveSyncBatchNorm2d to support non-distributed cases and more general
inputs (#1435)

30.7.5 Contributors

A total of 11 developers contributed to this release.

@ZCMax, @ZwwWayne, @Tai-Wang, @VVsssssk, @HanaRo, @JoeyforJoy, @ansonlcy, @filaPro, @jshilong,
@Xiangxu-0103, @deleomike

30.8 v1.0.0rc1 (1/4/2022)

30.8.1 Compatibility

• We migrate all the mmdet3d ops to mmcv and do not need to compile them when installing mmdet3d.

• To fix the imprecise timestamp and optimize its saving method, we reformat the point cloud data during Waymo
data conversion. The data conversion time is also optimized significantly by supporting parallel processing.
Please re-generate KITTI format Waymo data if necessary. See more details in the compatibility documentation.

• We update some of the model checkpoints after the refactor of coordinate systems. Please stay tuned for the
release of the remaining model checkpoints.

30.8.2 Highlights

• Migrate all the mmdet3d ops to mmcv

• Support parallel waymo data converter

• Add ScanNet instance segmentation dataset with metrics

• Better compatibility for windows with CI support, op migration and bug fixes

• Support loading annotations from Ceph

30.8.3 New Features

• Add ScanNet instance segmentation dataset with metrics (#1230)

• Support different random seeds for different ranks (#1321)

• Support loading annotations from Ceph (#1325)

• Support resuming from the latest checkpoint automatically (#1329)

• Add windows CI (#1345)
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30.8.4 Improvements

• Update the table format and OpenMMLab project orders in README.md (#1272, #1283)

• Migrate all the mmdet3d ops to mmcv (#1240, #1286, #1290, #1333)

• Add with_plane flag in the KITTI data conversion (#1278)

• Update instructions and links in the documentation (#1300, 1309, #1319)

• Support parallel Waymo dataset converter and ground truth database generator (#1327)

• Add quick installation commands to getting_started.md (#1366)

30.8.5 Bug Fixes

• Update nuimages configs to use new nms config style (#1258)

• Fix the usage of np.long for windows compatibility (#1270)

• Fix the incorrect indexing in BasePoints (#1274)

• Fix the incorrect indexing in the pillar_scatter.forward_single (#1280)

• Fix unit tests that use GPUs (#1301)

• Fix incorrect feature dimensions in DynamicPillarFeatureNet caused by previous upgrading of
PillarFeatureNet (#1302)

• Remove the CameraPoints constraint in PointSample (#1314)

• Fix imprecise timestamps saving of Waymo dataset (#1327)

30.8.6 Contributors

A total of 9 developers contributed to this release.

@ZCMax, @ZwwWayne, @wHao-Wu, @Tai-Wang, @wangruohui, @zjwzcx, @Xiangxu-0103, @EdAyers,
@hongye-dev, @zhanggefan

30.9 v1.0.0rc0 (18/2/2022)

30.9.1 Compatibility

• We refactor our three coordinate systems to make their rotation directions and origins more consistent, and further
remove unnecessary hacks in different datasets and models. Therefore, please re-generate data infos or convert
the old version to the new one with our provided scripts. We will also provide updated checkpoints in the next
version. Please refer to the compatibility documentation for more details.

• Unify the camera keys for consistent transformation between coordinate systems on different datasets. The modi-
fication changes the key names to lidar2img, depth2img, cam2img, etc., for easier understanding. Customized
codes using legacy keys may be influenced.

• The next release will begin to move files of CUDA ops to MMCV. It will influence the way to import related
functions. We will not break the compatibility but will raise a warning first and please prepare to migrate it.
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30.9.2 Highlights

• Support new monocular 3D detectors: PGD, SMOKE, MonoFlex

• Support a new LiDAR-based detector: PointRCNN

• Support a new backbone: DGCNN

• Support 3D object detection on the S3DIS dataset

• Support compilation on Windows

• Full benchmark for PAConv on S3DIS

• Further enhancement for documentation, especially on the Chinese documentation

30.9.3 New Features

• Support 3D object detection on the S3DIS dataset (#835)

• Support PointRCNN (#842, #843, #856, #974, #1022, #1109, #1125)

• Support DGCNN (#896)

• Support PGD (#938, #940, #948, #950, #964, #1014, #1065, #1070, #1157)

• Support SMOKE (#939, #955, #959, #975, #988, #999, #1029)

• Support MonoFlex (#1026, #1044, #1114, #1115, #1183)

• Support CPU Training (#1196)

30.9.4 Improvements

• Support point sampling based on distance metric (#667, #840)

• Refactor coordinate systems (#677, #774, #803, #899, #906, #912, #968, #1001)

• Unify camera keys in PointFusion and transformations between different systems (#791, #805)

• Refine documentation (#792, #827, #829, #836, #849, #854, #859, #1111, #1113, #1116, #1121, #1132, #1135,
#1185, #1193, #1226)

• Add a script to support benchmark regression (#808)

• Benchmark PAConvCUDA on S3DIS (#847)

• Support to download pdf and epub documentation (#850)

• Change the repeat setting in Group-Free-3D configs to reduce training epochs (#855)

• Support KITTI AP40 evaluation metric (#927)

• Add the mmdet3d2torchserve tool for SECOND (#977)

• Add code-spell pre-commit hook and fix typos (#995)

• Support the latest numba version (#1043)

• Set a default seed to use when the random seed is not specified (#1072)

• Distribute mix-precision models to each algorithm folder (#1074)

• Add abstract and a representative figure for each algorithm (#1086)

• Upgrade pre-commit hook (#1088, #1217)
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• Support augmented data and ground truth visualization (#1092)

• Add local yaw property for CameraInstance3DBoxes (#1130)

• Lock the required numba version to 0.53.0 (#1159)

• Support the usage of plane information for KITTI dataset (#1162)

• Deprecate the support for “python setup.py test” (#1164)

• Reduce the number of multi-process threads to accelerate training (#1168)

• Support 3D flip augmentation for semantic segmentation (#1181)

• Update README format for each model (#1195)

30.9.5 Bug Fixes

• Fix compiling errors on Windows (#766)

• Fix the deprecated nms setting in the ImVoteNet config (#828)

• Use the latest wrap_fp16_model import from mmcv (#861)

• Remove 2D annotations generation on Lyft (#867)

• Update index files for the Chinese documentation to be consistent with the English version (#873)

• Fix the nested list transpose in the CenterPoint head (#879)

• Fix deprecated pretrained model loading for RegNet (#889)

• Fix the incorrect dimension indices of rotations and testing config in the CenterPoint test time augmentation
(#892)

• Fix and improve visualization tools (#956, #1066, #1073)

• Fix PointPillars FLOPs calculation error (#1075)

• Fix missing dimension information in the SUN RGB-D data generation (#1120)

• Fix incorrect anchor range settings in the PointPillars config for KITTI (#1163)

• Fix incorrect model information in the RegNet metafile (#1184)

• Fix bugs in non-distributed multi-gpu training and testing (#1197)

• Fix a potential assertion error when generating corners from an empty box (#1212)

• Upgrade bazel version according to the requirement of Waymo Devkit (#1223)

30.9.6 Contributors

A total of 12 developers contributed to this release.

@THU17cyz, @wHao-Wu, @wangruohui, @Wuziyi616, @filaPro, @ZwwWayne, @Tai-Wang, @DCNSW,
@xieenze, @robin-karlsson0, @ZCMax, @Otteri
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30.10 v0.18.1 (1/2/2022)

30.10.1 Improvements

• Support Flip3D augmentation in semantic segmentation task (#1182)

• Update regnet metafile (#1184)

• Add point cloud annotation tools introduction in FAQ (#1185)

• Add missing explanations of cam_intrinsic in the nuScenes dataset doc (#1193)

30.10.2 Bug Fixes

• Deprecate the support for “python setup.py test” (#1164)

• Fix the rotation matrix while rotation axis=0 (#1182)

• Fix the bug in non-distributed multi-gpu training/testing (#1197)

• Fix a potential bug when generating corners for empty bounding boxes (#1212)

30.10.3 Contributors

A total of 4 developers contributed to this release.

@ZwwWayne, @ZCMax, @Tai-Wang, @wHao-Wu

30.11 v0.18.0 (1/1/2022)

30.11.1 Highlights

• Update the required minimum version of mmdet and mmseg

30.11.2 Improvements

• Use the official markdownlint hook and add codespell hook for pre-committing (#1088)

• Improve CI operation (#1095, #1102, #1103)

• Use shared menu content from OpenMMLab’s theme and remove duplicated contents from config (#1111)

• Refactor the structure of documentation (#1113, #1121)

• Update the required minimum version of mmdet and mmseg (#1147)
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30.11.3 Bug Fixes

• Fix symlink failure on Windows (#1096)

• Fix the upper bound of mmcv version in the mminstall requirements (#1104)

• Fix API documentation compilation and mmcv build errors (#1116)

• Fix figure links and pdf documentation compilation (#1132, #1135)

30.11.4 Contributors

A total of 4 developers contributed to this release.

@ZwwWayne, @ZCMax, @Tai-Wang, @wHao-Wu

30.12 v0.17.3 (1/12/2021)

30.12.1 Improvements

• Change the default show value to False in show_result function to avoid unnecessary errors (#1034)

• Improve the visualization of detection results with colorized points in single_gpu_test (#1050)

• Clean unnecessary custom_imports in entrypoints (#1068)

30.12.2 Bug Fixes

• Update mmcv version in the Dockerfile (#1036)

• Fix the memory-leak problem when loading checkpoints in init_model (#1045)

• Fix incorrect velocity indexing when formatting boxes on nuScenes (#1049)

• Explicitly set cuda device ID in init_model to avoid memory allocation on unexpected devices (#1056)

• Fix PointPillars FLOPs calculation error (#1076)

30.12.3 Contributors

A total of 5 developers contributed to this release.

@wHao-Wu, @Tai-Wang, @ZCMax, @MilkClouds, @aldakata

30.13 v0.17.2 (1/11/2021)

30.13.1 Improvements

• Update Group-Free-3D and FCOS3D bibtex (#985)

• Update the solutions for incompatibility of pycocotools in the FAQ (#993)

• Add Chinese documentation for the KITTI (#1003) and Lyft (#1010) dataset tutorial
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• Add the H3DNet checkpoint converter for incompatible keys (#1007)

30.13.2 Bug Fixes

• Update mmdetection and mmsegmentation version in the Dockerfile (#992)

• Fix links in the Chinese documentation (#1015)

30.13.3 Contributors

A total of 4 developers contributed to this release.

@Tai-Wang, @wHao-Wu, @ZwwWayne, @ZCMax

30.14 v0.17.1 (1/10/2021)

30.14.1 Highlights

• Support a faster but non-deterministic version of hard voxelization

• Completion of dataset tutorials and the Chinese documentation

• Improved the aesthetics of the documentation format

30.14.2 Improvements

• Add Chinese documentation for training on customized datasets and designing customized models (#729, #820)

• Support a faster but non-deterministic version of hard voxelization (#904)

• Update paper titles and code details for metafiles (#917)

• Add a tutorial for KITTI dataset (#953)

• Use Pytorch sphinx theme to improve the format of documentation (#958)

• Use the docker to accelerate CI (#971)

30.14.3 Bug Fixes

• Fix the sphinx version used in the documentation (#902)

• Fix a dynamic scatter bug that discards the first voxel by mistake when all input points are valid (#915)

• Fix the inconsistent variable names used in the unit test for voxel generator (#919)

• Upgrade to use build_prior_generator to replace the legacy build_anchor_generator (#941)

• Fix a minor bug caused by a too small difference set in the FreeAnchor Head (#944)
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30.14.4 Contributors

A total of 8 developers contributed to this release.

@DCNSW, @zhanggefan, @mickeyouyou, @ZCMax, @wHao-Wu, @tojimahammatov, @xiliu8006, @Tai-Wang

30.15 v0.17.0 (1/9/2021)

30.15.1 Compatibility

• Unify the camera keys for consistent transformation between coordinate systems on different datasets. The mod-
ification change the key names to lidar2img, depth2img, cam2img, etc. for easier understanding. Customized
codes using legacy keys may be influenced.

• The next release will begin to move files of CUDA ops to MMCV. It will influence the way to import related
functions. We will not break the compatibility but will raise a warning first and please prepare to migrate it.

30.15.2 Highlights

• Support 3D object detection on the S3DIS dataset

• Support compilation on Windows

• Full benchmark for PAConv on S3DIS

• Further enhancement for documentation, especially on the Chinese documentation

30.15.3 New Features

• Support 3D object detection on the S3DIS dataset (#835)

30.15.4 Improvements

• Support point sampling based on distance metric (#667, #840)

• Update PointFusion to support unified camera keys (#791)

• Add Chinese documentation for customized dataset (#792), data pipeline (#827), customized runtime (#829),
3D Detection on ScanNet (#836), nuScenes (#854) and Waymo (#859)

• Unify camera keys used in transformation between different systems (#805)

• Add a script to support benchmark regression (#808)

• Benchmark PAConvCUDA on S3DIS (#847)

• Add a tutorial for 3D detection on the Lyft dataset (#849)

• Support to download pdf and epub documentation (#850)

• Change the repeat setting in Group-Free-3D configs to reduce training epochs (#855)
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30.15.5 Bug Fixes

• Fix compiling errors on Windows (#766)

• Fix the deprecated nms setting in the ImVoteNet config (#828)

• Use the latest wrap_fp16_model import from mmcv (#861)

• Remove 2D annotations generation on Lyft (#867)

• Update index files for the Chinese documentation to be consistent with the English version (#873)

• Fix the nested list transpose in the CenterPoint head (#879)

• Fix deprecated pretrained model loading for RegNet (#889)

30.15.6 Contributors

A total of 11 developers contributed to this release.

@THU17cyz, @wHao-Wu, @wangruohui, @Wuziyi616, @filaPro, @ZwwWayne, @Tai-Wang, @DCNSW,
@xieenze, @robin-karlsson0, @ZCMax

30.16 v0.16.0 (1/8/2021)

30.16.1 Compatibility

• Remove the rotation and dimension hack in the monocular 3D detection on nuScenes by applying corresponding
transformation in the pre-processing and post-processing. The modification only influences nuScenes coco-style
json files. Please re-run the data preparation scripts if necessary. See more details in the PR #744.

• Add a new pre-processing module for the ScanNet dataset in order to support multi-view detectors. Please run
the updated scripts to extract the RGB data and its annotations. See more details in the PR #696.

30.16.2 Highlights

• Support to use MIM with pip installation

• Support PAConv models and benchmarks on S3DIS

• Enhance the documentation especially on dataset tutorials

30.16.3 New Features

• Support RGB images on ScanNet for multi-view detectors (#696)

• Support FLOPs and number of parameters calculation (#736)

• Support to use MIM with pip installation (#782)

• Support PAConv models and benchmarks on the S3DIS dataset (#783, #809)
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30.16.4 Improvements

• Refactor Group-Free-3D to make it inherit BaseModule from MMCV (#704)

• Modify the initialization methods of FCOS3D to be consistent with the refactored approach (#705)

• Benchmark the Group-Free-3D models on ScanNet (#710)

• Add Chinese documentation for Getting Started (#725), FAQ (#730), Model Zoo (#735), Demo (#745), Quick
Run (#746), Data Preparation (#787) and Configs (#788)

• Add documentation for semantic segmentation on ScanNet and S3DIS (#743, #747, #806, #807)

• Add a parameter max_keep_ckpts to limit the maximum number of saved Group-Free-3D checkpoints (#765)

• Add documentation for 3D detection on SUN RGB-D and nuScenes (#770, #793)

• Remove mmpycocotools in the Dockerfile (#785)

30.16.5 Bug Fixes

• Fix versions of OpenMMLab dependencies (#708)

• Convert rt_mat to torch.Tensor in coordinate transformation for compatibility (#709)

• Fix the bev_range initialization in ObjectRangeFilter according to the gt_bboxes_3d type (#717)

• Fix Chinese documentation and incorrect doc format due to the incompatible Sphinx version (#718)

• Fix a potential bug when setting interval == 1 in analyze_logs.py (#720)

• Update the structure of Chinese documentation (#722)

• Fix FCOS3D FPN BC-Breaking caused by the code refactoring in MMDetection (#739)

• Fix wrong in_channels when with_distance=True in the Dynamic VFE Layers (#749)

• Fix the dimension and yaw hack of FCOS3D on nuScenes (#744, #794, #795, #818)

• Fix the missing default bbox_mode in the show_multi_modality_result (#825)

30.16.6 Contributors

A total of 12 developers contributed to this release.

@yinchimaoliang, @gopi231091, @filaPro, @ZwwWayne, @ZCMax, @hjin2902, @wHao-Wu, @Wuziyi616,
@xiliu8006, @THU17cyz, @DCNSW, @Tai-Wang

30.17 v0.15.0 (1/7/2021)

30.17.1 Compatibility

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so
MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120,
for related issues, please refer to #5343.
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30.17.2 Highlights

• Support PAConv

• Support monocular/multi-view 3D detector ImVoxelNet on KITTI

• Support Transformer-based 3D detection method Group-Free-3D on ScanNet

• Add documentation for tasks including LiDAR-based 3D detection, vision-only 3D detection and point-based
3D semantic segmentation

• Add dataset documents like ScanNet

30.17.3 New Features

• Support Group-Free-3D on ScanNet (#539)

• Support PAConv modules (#598, #599)

• Support ImVoxelNet on KITTI (#627, #654)

30.17.4 Improvements

• Add unit tests for pipeline functions LoadImageFromFileMono3D, ObjectNameFilter and
ObjectRangeFilter (#615)

• Enhance IndoorPatchPointSample (#617)

• Refactor model initialization methods based MMCV (#622)

• Add Chinese docs (#629)

• Add documentation for LiDAR-based 3D detection (#642)

• Unify intrinsic and extrinsic matrices for all datasets (#653)

• Add documentation for point-based 3D semantic segmentation (#663)

• Add documentation of ScanNet for 3D detection (#664)

• Refine docs for tutorials (#666)

• Add documentation for vision-only 3D detection (#669)

• Refine docs for Quick Run and Useful Tools (#686)

30.17.5 Bug Fixes

• Fix the bug of BackgroundPointsFilter using the bottom center of ground truth (#609)

• Fix LoadMultiViewImageFromFiles to unravel stacked multi-view images to list to be consistent with Default-
FormatBundle (#611)

• Fix the potential bug in analyze_logs when the training resumes from a checkpoint or is stopped before evaluation
(#634)

• Fix test commands in docs and make some refinements (#635)

• Fix wrong config paths in unit tests (#641)
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30.18 v0.14.0 (1/6/2021)

30.18.1 Highlights

• Support the point cloud segmentation method PointNet++

30.18.2 New Features

• Support PointNet++ (#479, #528, #532, #541)

• Support RandomJitterPoints transform for point cloud segmentation (#584)

• Support RandomDropPointsColor transform for point cloud segmentation (#585)

30.18.3 Improvements

• Move the point alignment of ScanNet from data pre-processing to pipeline (#439, #470)

• Add compatibility document to provide detailed descriptions of BC-breaking changes (#504)

• Add MMSegmentation installation requirement (#535)

• Support points rotation even without bounding box in GlobalRotScaleTrans for point cloud segmentaiton (#540)

• Support visualization of detection results and dataset browse for nuScenes Mono-3D dataset (#542, #582)

• Support faster implementation of KNN (#586)

• Support RegNetX models on Lyft dataset (#589)

• Remove a useless parameter label_weight from segmentation datasets including Custom3DSegDataset,
ScanNetSegDataset and S3DISSegDataset (#607)

30.18.4 Bug Fixes

• Fix a corrupted lidar data file in Lyft dataset in data_preparation (#546)

• Fix evaluation bugs in nuScenes and Lyft dataset (#549)

• Fix converting points between coordinates with specific transformation matrix in the coord_3d_mode.py (#556)

• Support PointPillars models on Lyft dataset (#578)

• Fix the bug of demo with pre-trained VoteNet model on ScanNet (#600)

30.19 v0.13.0 (1/5/2021)

30.19.1 Highlights

• Support a monocular 3D detection method FCOS3D

• Support ScanNet and S3DIS semantic segmentation dataset

• Enhancement of visualization tools for dataset browsing and demos, including support of visualization for multi-
modality data and point cloud segmentation.
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30.19.2 New Features

• Support ScanNet semantic segmentation dataset (#390)

• Support monocular 3D detection on nuScenes (#392)

• Support multi-modality visualization (#405)

• Support nuimages visualization (#408)

• Support monocular 3D detection on KITTI (#415)

• Support online visualization of semantic segmentation results (#416)

• Support ScanNet test results submission to online benchmark (#418)

• Support S3DIS data pre-processing and dataset class (#433)

• Support FCOS3D (#436, #442, #482, #484)

• Support dataset browse for multiple types of datasets (#467)

• Adding paper-with-code (PWC) metafile for each model in the model zoo (#485)

30.19.3 Improvements

• Support dataset browsing for SUNRGBD, ScanNet or KITTI points and detection results (#367)

• Add the pipeline to load data using file client (#430)

• Support to customize the type of runner (#437)

• Make pipeline functions process points and masks simultaneously when sampling points (#444)

• Add waymo unit tests (#455)

• Split the visualization of projecting points onto image from that for only points (#480)

• Efficient implementation of PointSegClassMapping (#489)

• Use the new model registry from mmcv (#495)

30.19.4 Bug Fixes

• Fix Pytorch 1.8 Compilation issue in the scatter_points_cuda.cu (#404)

• Fix dynamic_scatter errors triggered by empty point input (#417)

• Fix the bug of missing points caused by using break incorrectly in the voxelization (#423)

• Fix the missing coord_type in the waymo dataset config (#441)

• Fix errors in four unittest functions of configs, test_detectors.py, test_heads.py (#453)

• Fix 3DSSD training errors and simplify configs (#462)

• Clamp 3D votes projections to image boundaries in ImVoteNet (#463)

• Update out-of-date names of pipelines in the config of pointpillars benchmark (#474)

• Fix the lack of a placeholder when unpacking RPN targets in the h3d_bbox_head.py (#508)

• Fix the incorrect value of K when creating pickle files for SUN RGB-D (#511)
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30.20 v0.12.0 (1/4/2021)

30.20.1 Highlights

• Support a new multi-modality method ImVoteNet.

• Support PyTorch 1.7 and 1.8

• Refactor the structure of tools and train.py/test.py

30.20.2 New Features

• Support LiDAR-based semantic segmentation metrics (#332)

• Support ImVoteNet (#352, #384)

• Support the KNN GPU operation (#360, #371)

30.20.3 Improvements

• Add FAQ for common problems in the documentation (#333)

• Refactor the structure of tools (#339)

• Refactor train.py and test.py (#343)

• Support demo on nuScenes (#353)

• Add 3DSSD checkpoints (#359)

• Update the Bibtex of CenterPoint (#368)

• Add citation format and reference to other OpenMMLab projects in the README (#374)

• Upgrade the mmcv version requirements (#376)

• Add numba and numpy version requirements in FAQ (#379)

• Avoid unnecessary for-loop execution of vfe layer creation (#389)

• Update SUNRGBD dataset documentation to stress the requirements for training ImVoteNet (#391)

• Modify vote head to support 3DSSD (#396)

30.20.4 Bug Fixes

• Fix missing keys coord_type in database sampler config (#345)

• Rename H3DNet configs (#349)

• Fix CI by using ubuntu 18.04 in github workflow (#350)

• Add assertions to avoid 4-dim points being input to points_in_boxes (#357)

• Fix the SECOND results on Waymo in the corresponding README (#363)

• Fix the incorrect adopted pipeline when adding val to workflow (#370)

• Fix a potential bug when indices used in the backwarding in ThreeNN (#377)

• Fix a compilation error triggered by scatter_points_cuda.cu in PyTorch 1.7 (#393)
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30.21 v0.11.0 (1/3/2021)

30.21.1 Highlights

• Support more friendly visualization interfaces based on open3d

• Support a faster and more memory-efficient implementation of DynamicScatter

• Refactor unit tests and details of configs

30.21.2 New Features

• Support new visualization methods based on open3d (#284, #323)

30.21.3 Improvements

• Refactor unit tests (#303)

• Move the key train_cfg and test_cfg into the model configs (#307)

• Update README with Chinese version and instructions for getting started. (#310, #316)

• Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)

30.21.4 Bug Fixes

• Fix an unsupported bias setting in the unit test for centerpoint head (#304)

• Fix errors due to typos in the centerpoint head (#308)

• Fix a minor bug in points_in_boxes.py when tensors are not in the same device. (#317)

• Fix warning of deprecated usages of nonzero during training with PyTorch 1.6 (#330)

30.22 v0.10.0 (1/2/2021)

30.22.1 Highlights

• Preliminary release of API for SemanticKITTI dataset.

• Documentation and demo enhancement for better user experience.

• Fix a number of underlying minor bugs and add some corresponding important unit tests.
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30.22.2 New Features

• Support SemanticKITTI dataset preliminarily (#287)

30.22.3 Improvements

• Add tag to README in configurations for specifying different uses (#262)

• Update instructions for evaluation metrics in the documentation (#265)

• Add nuImages entry in README.md and gif demo (#266, #268)

• Add unit test for voxelization (#275)

30.22.4 Bug Fixes

• Fixed the issue of unpacking size in furthest_point_sample.py (#248)

• Fix bugs for 3DSSD triggered by empty ground truths (#258)

• Remove models without checkpoints in model zoo statistics of documentation (#259)

• Fix some unclear installation instructions in getting_started.md (#269)

• Fix relative paths/links in the documentation (#271)

• Fix a minor bug in scatter_points_cuda.cu when num_features != 4 (#275)

• Fix the bug about missing text files when testing on KITTI (#278)

• Fix issues caused by inplace modification of tensors in BaseInstance3DBoxes (#283)

• Fix log analysis for evaluation and adjust the documentation accordingly (#285)

30.23 v0.9.0 (31/12/2020)

30.23.1 Highlights

• Documentation refactoring with better structure, especially about how to implement new models and customized
datasets.

• More compatible with refactored point structure by bug fixes in ground truth sampling.

30.23.2 Improvements

• Documentation refactoring (#242)
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30.23.3 Bug Fixes

• Fix point structure related bugs in ground truth sampling (#211)

• Fix loading points in ground truth sampling augmentation on nuScenes (#221)

• Fix channel setting in the SeparateHead of CenterPoint (#228)

• Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)

• Remove unreachable lines in nuScenes data converter (#235)

• Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in
KITTI evaluation (#241)

30.24 v0.8.0 (30/11/2020)

30.24.1 Highlights

• Refactor points structure with more constructive and clearer implementation.

• Support axis-aligned IoU loss for VoteNet with better performance.

• Update and enhance SECOND benchmark on Waymo.

30.24.2 New Features

• Support axis-aligned IoU loss for VoteNet. (#194)

• Support points structure for consistent processing of all the point related representation. (#196, #204)

30.24.3 Improvements

• Enhance SECOND benchmark on Waymo with stronger baselines. (#205)

• Add model zoo statistics and polish the documentation. (#201)

30.25 v0.7.0 (1/11/2020)

30.25.1 Highlights

• Support a new method SSN with benchmarks on nuScenes and Lyft datasets.

• Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed pre-
cision training on KITTI and nuScenes.

• Support semantic segmentation on nuImages and provide HTC models with configurations and performance for
reference.
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30.25.2 New Features

• Modified primitive head which can support the setting on SUN-RGBD dataset (#136)

• Support semantic segmentation and HTC with models for reference on nuImages dataset (#155)

• Support SSN on nuScenes and Lyft datasets (#147, #174, #166, #182)

• Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)

30.25.3 Improvements

• Update SECOND benchmark with configurations for reference on Waymo (#166)

• Delete checkpoints on Waymo to comply its specific license agreement (#180)

• Update models and instructions with mixed precision training on KITTI and nuScenes (#178)

30.25.4 Bug Fixes

• Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)

• Fix the incorrect label mapping on nuImages dataset (#155)

30.26 v0.6.1 (11/10/2020)

30.26.1 Highlights

• Support mixed precision training of voxel-based methods

• Support docker with PyTorch 1.6.0

• Update baseline configs and results (CenterPoint on nuScenes and PointPillars on Waymo with full dataset)

• Switch model zoo to download.openmmlab.com

30.26.2 New Features

• Support dataset pipeline VoxelBasedPointSampler to sample multi-sweep points based on voxelization.
(#125)

• Support mixed precision training of voxel-based methods (#132)

• Support docker with PyTorch 1.6.0 (#160)
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30.26.3 Improvements

• Reduce requirements for the case exclusive of Waymo (#121)

• Switch model zoo to download.openmmlab.com (#126)

• Update docs related to Waymo (#128)

• Add version assertion in the init file (#129)

• Add evaluation interval setting for CenterPoint (#131)

• Add unit test for CenterPoint (#133)

• Update PointPillars baselines on Waymo with full dataset (#142)

• Update CenterPoint results with models and logs (#154)

30.26.4 Bug Fixes

• Fix a bug of visualization in multi-batch case (#120)

• Fix bugs in dcn unit test (#130)

• Fix dcn bias bug in centerpoint (#137)

• Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)

• Fix origin initialization in CameraInstance3DBoxes (#148, #150)

• Correct documentation link in the getting_started.md (#159)

• Fix model save path bug in gather_models.py (#153)

• Fix image padding shape bug in PointFusion (#162)

30.27 v0.6.0 (20/9/2020)

30.27.1 Highlights

• Support new methods H3DNet, 3DSSD, CenterPoint.

• Support new dataset Waymo (with PointPillars baselines) and nuImages (with Mask R-CNN and Cascade Mask
R-CNN baselines).

• Support Batch Inference

• Support Pytorch 1.6

• Start to publish mmdet3d package to PyPI since v0.5.0. You can use mmdet3d through pip install mmdet3d.
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30.27.2 Backwards Incompatible Changes

• Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based
on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream code-
bases.

• Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use
collect_env function in MMCV. get_compiler_version and get_compiling_cuda_version compiled
in mmdet3d.ops.utils are removed. Please import these two functions from mmcv.ops.

30.27.3 New Features

• Support nuImages dataset by converting them into coco format and release Mask R-CNN and Cascade Mask
R-CNN baseline models (#91, #94)

• Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)

• Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)

• Support H3DNet and release models on ScanNet dataset (#53, #58, #105)

• Support Fusion Point Sampling used in 3DSSD (#66)

• Add BackgroundPointsFilter to filter background points in data pipeline (#84)

• Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)

• Support dilated ball query used in 3DSSD (#96)

• Support 3DSSD and release models on KITTI dataset (#83, #100, #104)

• Support CenterPoint and release models on nuScenes dataset (#49, #92)

• Support Waymo dataset and release PointPillars baseline models (#118)

• Allow LoadPointsFromMultiSweeps to pad empty sweeps and select multiple sweeps randomly (#67)

30.27.4 Improvements

• Fix all warnings and bugs in PyTorch 1.6.0 (#70, #72)

• Update issue templates (#43)

• Update unit tests (#20, #24, #30)

• Update documentation for using ply format point cloud data (#41)

• Use points loader to load point cloud data in ground truth (GT) samplers (#87)

• Unify version file of OpenMMLab projects by using version.py (#112)

• Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)
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30.27.5 Bug Fixes

• Rename CosineAnealing to CosineAnnealing (#57)

• Fix device inconsistent bug in 3D IoU computation (#69)

• Fix a minor bug in json2csv of lyft dataset (#78)

• Add missed test data for pointnet modules (#85)

• Fix use_valid_flag bug in CustomDataset (#106)

30.28 v0.5.0 (9/7/2020)

MMDetection3D is released.
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CHAPTER

THIRTYONE

CHANGELOG OF V1.1

31.1 v1.1.0 (6/4/2023)

31.1.1 Highlights

• Support Cylinder3D (#2291, #2344, #2350)

• Support MinkUnet (#2294, #2358)

• Support SPVCNN (#2320#2372)

• Support TR3D detector in projects (#2274)

• Support the inference of BEVFusion in projects (#2175)

• Support DETR3D in projects (#2173)

31.1.2 New Features

• Support Cylinder3D (#2291, #2344, #2350)

• Support MinkUnet (#2294, #2358)

• Support SPVCNN (#2320#2372)

• Support TR3D detector in projects (#2274)

• Support the inference of BEVFusion in projects (#2175)

• Support DETR3D in projects (#2173)

• Support PolarMix and LaserMix augmentation (#2265, #2302)

• Support loading annotation of panoptic segmentation (#2223)

• Support panoptic segmentation metric (#2230)

• Add inferencer for LiDAR-based, monocular and multi-modality 3D detection (#2208, #2190, #2342)

• Add inferencer for LiDAR-based segmentation (#2304)
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31.1.3 Improvements

• Support lazy_init for CBGSDataset (#2271)

• Support generating annotation files for test set on Waymo (#2180)

• Enhance the support for SemanticKitti (#2253, #2323)

• File I/O migration and reconstruction (#2319)

• Support format_only option for Lyft, NuScenes and Waymo datasets (#2333, #2151)

• Replace np.transpose with torch.permute to speed up (#2277)

• Allow setting local-rank for pytorch 2.0 (#2387)

31.1.4 Bug Fixes

• Fix the problem of reversal of length and width when drawing heatmap in CenterFormer (#2362)

• Deprecate old type alias due to the new version of numpy (#2339)

• Lose trimesh version requirements to fix numpy random state (#2340)

• Fix the device mismatch error in CenterPoint (#2308)

• Fix bug of visualization when there are no bboxes (#2231)

• Fix bug of counting ignore index in IOU in segmentation evaluation (#2229)

31.1.5 Contributors

A total of 14 developers contributed to this release.

@ZLTJohn, @SekiroRong, @shufanwu, @vansin, @triple-Mu, @404Vector, @filaPro, @sunjiahao1999, @Ginray,
@Xiangxu-0103, @JingweiZhang12, @DezeZhao, @ZCMax, @roger-lcc

31.2 v1.1.0rc3 (7/1/2023)

31.2.1 Highlights

• Support CenterFormer in projects (#2175)

• Support PETR in projects (#2173)

31.2.2 New Features

• Support CenterFormer in projects (#2175)

• Support PETR in projects (#2173)

• Refactor ImVoxelNet on SUN RGB-D into mmdet3d v1.1 (#2141)
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31.2.3 Improvements

• Remove legacy builder.py (#2061)

• Update customize_dataset documentation (#2153)

• Update tutorial of LiDAR-based detection (#2120)

31.2.4 Bug Fixes

• Fix the configs of FCOS3D and PGD (#2191)

• Fix numpy’s ValueError in update_infos_to_v2.py (#2162)

• Fix parameter missing in Det3DVisualizationHook (#2118)

• Fix memory overflow in the rotated box IoU calculation (#2134)

• Fix lidar2cam error in update_infos_to_v2.py for nus and lyft dataset (#2110)

• Fix error of data type in Waymo metrics (#2109)

• Update bbox_3d information in cam_instances for mono3d detection task (#2046)

• Fix label saving of Waymo dataset (#2096)

31.2.5 Contributors

A total of 10 developers contributed to this release.

@SekiroRong, @ZLTJohn, @vansin, @shanmo, @VVsssssk, @ZCMax, @Xiangxu-0103, @JingweiZhang12, @Tai-
Wang, @lianqing11

31.3 v1.1.0rc2 (2/12/2022)

31.3.1 Highlights

• Support PV-RCNN

• Speed up evaluation on Waymo dataset

31.3.2 New Features

• Support PV-RCNN (#1597, #2045)

• Speed up evaluation on Waymo dataset (#2008)

• Refactor FCAF3D into the framework of mmdet3d v1.1 (#1945)

• Refactor S3DIS dataset into the framework of mmdet3d v1.1 (#1984)

• Add Projects/ folder and the first example project (#2042)
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31.3.3 Improvements

• Rename CLASSES and PALETTE to classes and palette respectively (#1932)

• Update metainfo in pkl files and add categories into metainfo (#1934)

• Show instance statistics before and after through the pipeline (#1863)

• Add configs of DGCNN for different testing areas (#1967)

• Remove testing utils from tests/utils/ to mmdet3d/testing/ (#2012)

• Add typehint for code in models/layers/ (#2014)

• Refine documentation (#1891, #1994)

• Refine voxelization for better speed (#2062)

31.3.4 Bug Fixes

• Fix loop visualization error about point cloud (#1914)

• Fix image conversion of Waymo to avoid information loss (#1979)

• Fix evaluation on KITTI testset (#2005)

• Fix sampling bug in IoUNegPiecewiseSampler (#2017)

• Fix point cloud range in CenterPoint (#1998)

• Fix some loading bugs and support FOV-image-based mode on Waymo dataset (#1942)

• Fix dataset conversion utils (#1923, #2040, #1971)

• Update metafiles in all the configs (#2006)

31.3.5 Contributors

A total of 12 developers contributed to this release.

@vavanade, @oyel, @thinkthinking, @PeterH0323 @274869388, @cxiang26, @lianqing11, @VVsssssk, @ZCMax,
@Xiangxu-0103, @JingweiZhang12, @Tai-Wang

31.4 v1.1.0rc1 (11/10/2022)

31.4.1 Highlights

• Support a camera-only 3D detection baseline on Waymo, MV-FCOS3D++
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31.4.2 New Features

• Support a camera-only 3D detection baseline on Waymo, MV-FCOS3D++, with new evaluation metrics and
transformations (#1716)

• Refactor PointRCNN in the framework of mmdet3d v1.1 (#1819)

31.4.3 Improvements

• Add auto_scale_lr in config to support training with auto-scale learning rates (#1807)

• Fix CI (#1813, #1865, #1877)

• Update browse_dataset.py script (#1817)

• Update SUN RGB-D and Lyft datasets documentation (#1833)

• Rename convert_to_datasample to add_pred_to_datasample in detectors (#1843)

• Update customized dataset documentation (#1845)

• Update Det3DLocalVisualization and visualization documentation (#1857)

• Add the code of generating cam_sync_labels for Waymo dataset (#1870)

• Update dataset transforms typehints (#1875)

31.4.4 Bug Fixes

• Fix missing registration of models in setup_env.py (#1808)

• Fix the data base sampler bugs when using the ground plane data (#1812)

• Add output directory existing check during visualization (#1828)

• Fix bugs of nuScenes dataset for monocular 3D detection (#1837)

• Fix visualization hook to support the visualization of different data modalities (#1839)

• Fix monocular 3D detection demo (#1864)

• Fix the lack of num_pts_feats key in nuscenes dataset and complete docstring (#1882)

31.4.5 Contributors

A total of 10 developers contributed to this release.

@ZwwWayne, @Tai-Wang, @lianqing11, @VVsssssk, @ZCMax, @Xiangxu-0103, @JingweiZhang12, @tpoi-
sonooo, @ice-tong, @jshilong
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31.5 v1.1.0rc0 (1/9/2022)

We are excited to announce the release of MMDetection3D 1.1.0rc0. MMDet3D 1.1.0rc0 is the first version of MMDe-
tection3D 1.1, a part of the OpenMMLab 2.0 projects. Built upon the new training engine and MMDet 3.x, MMDet3D
1.1 unifies the interfaces of dataset, models, evaluation, and visualization with faster training and testing speed. It also
provides a standard data protocol for different datasets, modalities, and tasks for 3D perception. We will support more
strong baselines in the future release, with our latest exploration on camera-only 3D detection from videos.

31.6 Highlights

1. New engines. MMDet3D 1.1 is based on MMEngine and MMDet 3.x, which provides a universal and pow-
erful runner that allows more flexible customizations and significantly simplifies the entry points of high-level
interfaces.

2. Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMDet3D 1.1 unifies and refactors the interfaces
and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0
projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality
algorithms.

3. Standard data protocol for all the datasets, modalities, and tasks for 3D perception. Based on the unified
base datasets inherited from MMEngine, we also design a standard data protocol that defines and unifies the
common keys across different datasets, tasks, and modalities. It significantly simplifies the usage of multiple
datasets and data modalities for multi-task frameworks and eases dataset customization. Please refer to the
documentation of customized datasets for details.

4. Strong baselines. We will release strong baselines of many popular models to enable fair comparisons among
state-of-the-art models.

5. More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started
more smoothly. Read it here.

31.7 Breaking Changes

MMDet3D 1.1 has undergone significant changes to have better design, higher efficiency, more flexibility, and more
unified interfaces. Besides the changes of API, we briefly list the major breaking changes in this section. We will update
the migration guide to provide complete details and migration instructions. Users can also refer to the compatibility
documentation and API doc for more details.

31.7.1 Dependencies

• MMDet3D 1.1 runs on PyTorch>=1.6. We have deprecated the support of PyTorch 1.5 to embrace the mixed
precision training and other new features since PyTorch 1.6. Some models can still run on PyTorch 1.5, but the
full functionality of MMDet3D 1.1 is not guaranteed.

• MMDet3D 1.1 relies on MMEngine to run. MMEngine is a new foundational library for training deep learning
models of OpenMMLab and are widely depended by OpenMMLab 2.0 projects. The dependencies of file IO
and training are migrated from MMCV 1.x to MMEngine.

• MMDet3D 1.1 relies on MMCV>=2.0.0rc0. Although MMCV no longer maintains the training functionalities
since 2.0.0rc0, MMDet3D 1.1 relies on the data transforms, CUDA operators, and image processing interfaces
in MMCV. Note that the package mmcv is the version that provides pre-built CUDA operators and mmcv-lite
does not since MMCV 2.0.0rc0, while mmcv-full has been deprecated since 2.0.0rc0.
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• MMDet3D 1.1 is based on MMDet 3.x, which is also a part of OpenMMLab 2.0 projects.

31.7.2 Training and testing

• MMDet3D 1.1 uses Runner in MMEngine rather than that in MMCV. The new Runner implements and unifies
the building logic of dataset, model, evaluation, and visualizer. Therefore, MMDet3D 1.1 no longer relies on
the building logics of those modules in mmdet3d.train.apis and tools/train.py. Those code have been
migrated into MMEngine. Please refer to the migration guide of Runner in MMEngine for more details.

• The Runner in MMEngine also supports testing and validation. The testing scripts are also simplified, which has
similar logic as that in training scripts to build the runner.

• The execution points of hooks in the new Runner have been enriched to allow more flexible customization. Please
refer to the migration guide of Hook in MMEngine for more details.

• Learning rate and momentum scheduling has been migrated from Hook to Parameter Scheduler in MMEngine.
Please refer to the migration guide of Parameter Scheduler in MMEngine for more details.

31.7.3 Configs

• The Runner in MMEngine uses a different config structure to ease the understanding of the components in runner.
Users can read the config example of MMDet3D 1.1 or refer to the migration guide in MMEngine for migration
details.

• The file names of configs and models are also refactored to follow the new rules unified across OpenMMLab 2.0
projects. The names of checkpoints are not updated for now as there is no BC-breaking of model weights between
MMDet3D 1.1 and 1.0.x. We will progressively replace all the model weights by those trained in MMDet3D
1.1. Please refer to the user guides of config for more details.

31.7.4 Dataset

The Dataset classes implemented in MMDet3D 1.1 all inherits from the Det3DDataset and Seg3DDataset, which
inherits from the BaseDataset in MMEngine. In addition to the changes of interfaces, there are several changes of
Dataset in MMDet3D 1.1.

• All the datasets support to serialize the internal data list to reduce the memory when multiple workers are built
for data loading.

• The internal data structure in the dataset is changed to be self-contained (without losing information like class
names in MMDet3D 1.0.x) while keeping simplicity.

• Common keys across different datasets and data modalities are defined and all the info files are unified into a
standard protocol.

• The evaluation functionality of each dataset has been removed from dataset so that some specific evaluation
metrics like KITTI AP can be used to evaluate the prediction on other datasets.
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31.7.5 Data Transforms

The data transforms in MMDet3D 1.1 all inherits from BaseTransform in MMCV>=2.0.0rc0, which defines a new
convention in OpenMMLab 2.0 projects. Besides the interface changes, there are several changes listed as below:

• The functionality of some data transforms (e.g., Resize) are decomposed into several transforms to simplify and
clarify the usages.

• The format of data dict processed by each data transform is changed according to the new data structure of dataset.

• Some inefficient data transforms (e.g., normalization and padding) are moved into data preprocessor of model to
improve data loading and training speed.

• The same data transforms in different OpenMMLab 2.0 libraries have the same augmentation implementation
and the logic given the same arguments, i.e., Resize in MMDet 3.x and MMSeg 1.x will resize the image in the
exact same manner given the same arguments.

31.7.6 Model

The models in MMDet3D 1.1 all inherits from BaseModel in MMEngine, which defines a new convention of models
in OpenMMLeb 2.0 projects. Users can refer to the tutorial of model in MMengine for more details. Accordingly,
there are several changes as the following:

• The model interfaces, including the input and output formats, are significantly simplified and unified following
the new convention in MMDet3D 1.1. Specifically, all the input data in training and testing are packed into
inputs and data_samples, where inputs contains model inputs like a dict contain a list of image tensors and
the point cloud data, and data_samples contains other information of the current data sample such as ground
truths, region proposals, and model predictions. In this way, different tasks in MMDet3D 1.1 can share the same
input arguments, which makes the models more general and suitable for multi-task learning and some flexible
training paradigms like semi-supervised learning.

• The model has a data preprocessor module, which are used to pre-process the input data of model. In MMDet3D
1.1, the data preprocessor usually does necessary steps to form the input images into a batch, such as padding.
It can also serve as a place for some special data augmentations or more efficient data transformations like
normalization.

• The internal logic of model have been changed. In MMDet3D 1.1, model uses forward_train, forward_test,
simple_test, and aug_test to deal with different model forward logics. In MMDet3D 1.1 and OpenMMLab
2.0, the forward function has three modes: ‘loss’, ‘predict’, and ‘tensor’ for training, inference, and tracing or
other purposes, respectively. The forward function calls self.loss, self.predict, and self._forward
given the modes ‘loss’, ‘predict’, and ‘tensor’, respectively.

31.7.7 Evaluation

The evaluation in MMDet3D 1.0.x strictly binds with the dataset. In contrast, MMDet3D 1.1 decomposes the evaluation
from dataset, so that all the detection dataset can evaluate with KITTI AP and other metrics implemented in MMDet3D
1.1. MMDet3D 1.1 mainly implements corresponding metrics for each dataset, which are manipulated by Evaluator
to complete the evaluation. Users can build evaluator in MMDet3D 1.1 to conduct offline evaluation, i.e., evaluate
predictions that may not produced in MMDet3D 1.1 with the dataset as long as the dataset and the prediction follows
the dataset conventions. More details can be find in the tutorial in mmengine.
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31.7.8 Visualization

The functions of visualization in MMDet3D 1.1 are removed. Instead, in OpenMMLab 2.0 projects, we use Visualizer
to visualize data. MMDet3D 1.1 implements Det3DLocalVisualizer to allow visualization of 2D and 3D data,
ground truths, model predictions, and feature maps, etc., at any place. It also supports to send the visualization data to
any external visualization backends such as Tensorboard.

31.8 Planned changes

We list several planned changes of MMDet3D 1.1.0rc0 so that the community could more comprehensively know the
progress of MMDet3D 1.1. Feel free to create a PR, issue, or discussion if you are interested, have any suggestions and
feedbacks, or want to participate.

1. Test-time augmentation: which is supported in MMDet3D 1.0.x, is not implemented in this version due to limited
time slot. We will support it in the following releases with a new and simplified design.

2. Inference interfaces: a unified inference interfaces will be supported in the future to ease the use of released
models.

3. Interfaces of useful tools that can be used in notebook: more useful tools that implemented in the tools directory
will have their python interfaces so that they can be used through notebook and in downstream libraries.

4. Documentation: we will add more design docs, tutorials, and migration guidance so that the community can
deep dive into our new design, participate the future development, and smoothly migrate downstream libraries
to MMDet3D 1.1.

5. Wandb visualization: MMDet 2.x supports data visualization since v2.25.0, which has not been migrated to
MMDet 3.x for now. Since Wandb provides strong visualization and experiment management capabilities, a
DetWandbVisualizer and maybe a hook are planned to fully migrated those functionalities in MMDet 2.x and
a Det3DWandbVisualizer will be supported in MMDet3D 1.1 accordingly.

6. Will support recent new features added in MMDet3D 1.0.x and our recent exploration on camera-only 3D de-
tection from videos: we will refactor these models and support them with benchmarks and models soon.
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CHAPTER

THIRTYTWO

COMPATIBILITY

32.1 v1.1.0rc0

32.1.1 OpenMMLab v2.0 Refactoring

In this version, we make large refactoring based on MMEngine to achieve unified data elements, model interfaces,
visualizers, evaluators and other runtime modules across different datasets, tasks and even codebases. A brief summary
for this refactoring is as follows:

• Data Element:

– We add Det3DDataSample as the common data element passing through datasets and models. It inher-
its from DetDataSample in mmdetection and implement InstanceData, PixelData, and LabelData
inheriting from BaseDataElement in MMEngine to represent different types of ground truth labels or
predictions.

• Datasets:

– We add Det3DDataset and Seg3DDataset as the base datasets to inherit from the unified BaseDataset in
MMEngine. They implement most functions that are commonly used across different datasets and simplify
the info loading/processing in the current datasets. Re-defined input arguments and functions can be most
re-used in different datasets, which are important for the implementation of customized datasets.

– We define the common keys across different datasets and unify all the info files with a standard protocol. The
same info is more clear for users because they share the same key across different dataset infos. Besides, for
different settings, such as camera-only and LiDAR-only methods, we no longer need different info formats
(like the previous pkl and json files). We can just revise the parse_data_info to read the necessary
information from a complete info file.

– We add train_dataloader, val_dataloader and test_dataloader to replace the original data in
the config. It simplify the levels of data-related fields.

• Data Transforms

– Based on the basic transforms and wrappers re-implemented and simplified in the latest MMCV, we refactor
data transforms to inherit from them.

– We also adjust the implementation of current data pipelines to make them compatible with our latest data
protocol.

– Normalization, padding of images and voxelization operations are moved to the data-preprocessing.

– DefaultFormatBundle3D and Collect3D are replaced with PackDet3DInputs to pack the data into the
element format as model input.

• Models
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– Unify the model interface as inputs, data_samples, return_loss=False

– The basic pre-processing before model forward includes: 1) convert input from CPU to GPU tensors; 2)
padding images; 3) normalize images; 4) voxelization.

– Return loss_dict during training while return list[data_sample] during inference

– Simply function interfaces in the models

– Add preprocess_cfg in the model configs for pre-processing

• Visualizer

– Design a unified visualizer, Det3DLocalVisualizer, based on MMEngine for different 3D tasks and
settings

– Support browsing dataset and visualization hooks based on the Det3DLocalVisualizer

• Evaluator

– Decouple evaluators from datasets to make them more flexible: the evaluation codes of each dataset are
implemented as a metric class exclusively.

– Add evaluator information to the current dataset configs

• Registry

– Refactor all the registries to inherit from root registries in MMEngine

– When using modules from other codebases, it is necessary to specify the registry scope, such as mmdet.
ResNet

• Others: Refactor logging, hooks, scheduler, runner and other runtime configs based on MMEngine

32.2 v1.0.0rc1

32.2.1 Operators Migration

We have adopted CUDA operators compiled from mmcv and removed all the CUDA operators in mmdet3d. We now
do not need to compile the CUDA operators in mmdet3d anymore.

32.2.2 Waymo dataset converter refactoring

In this version we did a major code refactoring that boosted the performance of waymo dataset conversion by multipro-
cessing. Meanwhile, we also fixed the imprecise timestamps saving issue in waymo dataset conversion. This change
introduces following backward compatibility breaks:

• The point cloud .bin files of waymo dataset need to be regenerated. In the .bin files each point occupies 6
float32 and the meaning of the last float32 now changed from imprecise timestamps to range frame offset.
The range frame offset for each point is calculated asri * h * w + row * w + col if the point is from the
TOP lidar or -1 otherwise. The h, w denote the height and width of the TOP lidar’s range frame. The ri, row,
col denote the return index, the row and the column of the range frame where each point locates. Following
tables show the difference across the change:

Before

After

• The objects’ point cloud .bin files in the GT-database of waymo dataset need to be regenerated because we also
dumped the range frame offset for each point into it. Following tables show the difference across the change:
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https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/visualization/local_visualizer.py
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Before

After

• Any configuration that uses waymo dataset with GT Augmentation should change the db_sampler.
points_loader.load_dim from 5 to 6.

32.3 v1.0.0rc0

32.3.1 Coordinate system refactoring

In this version, we did a major code refactoring which improved the consistency among the three coordinate systems
(and corresponding box representation), LiDAR, Camera, and Depth. A brief summary for this refactoring is as follows:

• The three coordinate systems are all right-handed now (which means the yaw angle increases in the counter-
clockwise direction).

• The LiDAR system (x_size, y_size, z_size) corresponds to (l, w, h) instead of (w, l, h). This is
more natural since l is parallel with the direction where the yaw angle is zero, and we prefer using the positive
direction of the x axis as that direction, which is exactly how we define yaw angle in Depth and Camera coordinate
systems.

• The APIs for box-related operations are improved and now are more user-friendly.

NOTICE!!

Since definitions of box representation have changed, the annotation data of most datasets require updating:

• SUN RGB-D: Yaw angles in the annotation should be reversed.

• KITTI: For LiDAR boxes in GT databases, (x_size, y_size, z_size, yaw) out of (x, y, z, x_size, y_size, z_size)
should be converted from the old LiDAR coordinate system to the new one. The training/validation data anno-
tations should be left unchanged since they are under the Camera coordinate system, which is unmodified after
the refactoring.

• Waymo: Same as KITTI.

• nuScenes: For LiDAR boxes in training/validation data and GT databases, (x_size, y_size, z_size, yaw) out of
(x, y, z, x_size, y_size, z_size) should be converted.

• Lyft: Same as nuScenes.

Please regenerate the data annotation/GT database files or use update_data_coords.py to update the data.

To use boxes under Depth and LiDAR coordinate systems, or to convert boxes between different coordinate systems,
users should be aware of the difference between the old and new definitions. For example, the rotation, flipping, and
bev functions of DepthInstance3DBoxes and LiDARInstance3DBoxes and box conversion functions have all been
reimplemented in the refactoring.

Consequently, functions like output_to_lyft_box undergo small modification to adapt to the new LiDAR/Depth
box.

Since the LiDAR system (x_size, y_size, z_size) now corresponds to (l, w, h) instead of (w, l, h), the
anchor sizes for LiDAR boxes are also changed, e.g., from [1.6, 3.9, 1.56] to [3.9, 1.6, 1.56].

Functions only involving points are generally unaffected except if they rely on some refactored utility functions such
as rotation_3d_in_axis.
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https://github.com/open-mmlab/mmdetection3d/blob/v1.0.0rc0/tools/update_data_coords.py
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Other BC-breaking or new features:

• array_converter: Please refer to array_converter.py. Functions wrapped with array_converter can convert
array-like input types of torch.Tensor, np.ndarray, and list/tuple/float to torch.Tensor to process
in an unified PyTorch pipeline. The result may finally be converted back to the input type. Most functions in
utils.py are wrapped with array_converter.

• points_in_boxes and points_in_boxes_batch will be deprecated soon. They are renamed to
points_in_boxes_part and points_in_boxes_all respectively, with more detailed docstrings. The ma-
jor difference of the two functions is that if a point is enclosed by multiple boxes, points_in_boxes_part
will only return the index of the first enclosing box while points_in_boxes_all will return all the indices of
enclosing boxes.

• rotation_3d_in_axis: Please refer to utils.py. Now this function supports multiple input types and more
options. The function with the same name in box_np_ops.py is deleted since we do not need another function
to tackle with NumPy data. rotation_2d, points_cam2img, and limit_period in box_np_ops.py are also
deleted for the same reason.

• bev method of CameraInstance3DBoxes: Changed it to be consistent with the definition of bev in Depth and
LiDAR coordinate systems.

• Data augmentation utils in data_augment_utils.py now follow the rules of a right-handed system.

• We do not need the yaw hacking in KITTI anymore after refining get_direction_target. Interested users
may refer to PR #677 .

32.4 0.16.0

32.4.1 Returned values of QueryAndGroup operation

We modified the returned grouped_xyz value of operation QueryAndGroup to support PAConv segmentor. Originally,
the grouped_xyz is centered by subtracting the grouping centers, which represents the relative positions of grouped
points. Now, we didn’t perform such subtraction and the returned grouped_xyz stands for the absolute coordinates of
these points.

Note that, the other returned variables of QueryAndGroup such as new_features, unique_cnt and grouped_idx
are not affected.

32.4.2 NuScenes coco-style data pre-processing

We remove the rotation and dimension hack in the monocular 3D detection on nuScenes. Specifically, we transform the
rotation and dimension of boxes defined by nuScenes devkit to the coordinate system of our CameraInstance3DBoxes
in the pre-processing and transform them back in the post-processing. In this way, we can remove the corresponding
hack used in the visualization tools. The modification also guarantees the correctness of all the operations based on
our CameraInstance3DBoxes (such as NMS and flip augmentation) when training monocular 3D detectors.

The modification only influences nuScenes coco-style json files. Please re-run the nuScenes data preparation script if
necessary. See more details in the PR #744.
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32.4.3 ScanNet dataset for ImVoxelNet

We adopt a new pre-processing procedure for the ScanNet dataset in order to support ImVoxelNet, which is a multi-
view method requiring image data. In previous versions of MMDetection3D, ScanNet dataset was only used for point
cloud based 3D detection and segmentation methods. We plan adding ImVoxelNet to our model zoo, thus updating
ScanNet correspondingly by adding image-related pre-processing steps. Specifically, we made these changes:

• Add script for extracting RGB data.

• Update script for annotation creating.

• Add instructions in the documents on preparing image data.

Please refer to the ScanNet README.md for more details.

32.5 0.15.0

32.5.1 MMCV Version

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so
MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to #1120,
for related issues, please refer to #5343.

32.5.2 Unified parameter initialization

To unify the parameter initialization in OpenMMLab projects, MMCV supports BaseModule that accepts init_cfg
to allow the modules’ parameters initialized in a flexible and unified manner. Now the users need to explicitly call
model.init_weights() in the training script to initialize the model (as in here, previously this was handled by the
detector. Please refer to PR #622 for details.

32.5.3 BackgroundPointsFilter

We modified the dataset augmentation function BackgroundPointsFilter(here). In previous version of MMdetec-
tion3D, BackgroundPointsFilter changes the gt_bboxes_3d’s bottom center to the gravity center. In MMDetec-
tion3D 0.15.0, BackgroundPointsFilter will not change it. Please refer to PR #609 for details.

32.5.4 Enhance IndoorPatchPointSample transform

We enhance the pipeline function IndoorPatchPointSample used in point cloud segmentation task by adding more
choices for patch selection. Also, we plan to remove the unused parameter sample_rate in the future. Please modify
the code as well as the config files accordingly if you use this transform.
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32.6 0.14.0

32.6.1 Dataset class for 3D segmentation task

We remove a useless parameter label_weight from segmentation datasets including Custom3DSegDataset,
ScanNetSegDataset and S3DISSegDataset since this weight is utilized in the loss function of model class. Please
modify the code as well as the config files accordingly if you use or inherit from these codes.

32.6.2 ScanNet data pre-processing

We adopt new pre-processing and conversion steps of ScanNet dataset. In previous versions of MMDetection3D,
ScanNet dataset was only used for 3D detection task, where we trained on the training set and tested on the validation set.
In MMDetection3D 0.14.0, we further support 3D segmentation task on ScanNet, which includes online benchmarking
on test set. Since the alignment matrix is not provided for test set data, we abandon the alignment of points in data
generation steps to support both tasks. Besides, as 3D segmentation requires per-point prediction, we also remove the
down-sampling step in data generation.

• In the new ScanNet processing scripts, we save the unaligned points for all the training, validation and test set.
For train and val set with annotations, we also store the axis_align_matrix in data infos. For ground-truth
bounding boxes, we store boxes in both aligned and unaligned coordinates with key gt_boxes_upright_depth
and key unaligned_gt_boxes_upright_depth respectively in data infos.

• In ScanNetDataset, we now load the axis_align_matrix as a part of data annotations. If it is not contained in
old data infos, we will use identity matrix for compatibility. We also add a transform function GlobalAlignment
in ScanNet detection data pipeline to align the points.

• Since the aligned boxes share the same key as in old data infos, we do not need to modify the code related to it.
But do remember that they are not in the same coordinate system as the saved points.

• There is an PointSample pipeline in the data pipelines for ScanNet detection task which down-samples points.
So removing down-sampling in data generation will not affect the code.

We have trained a VoteNet model on the newly processed ScanNet dataset and get similar benchmark results. In order to
prepare ScanNet data for both detection and segmentation tasks, please re-run the new pre-processing scripts following
the ScanNet README.md.

32.7 0.12.0

32.7.1 SUNRGBD dataset for ImVoteNet

We adopt a new pre-processing procedure for the SUNRGBD dataset in order to support ImVoteNet, which is a multi-
modality method requiring both image and point cloud data. In previous versions of MMDetection3D, SUNRGBD
dataset was only used for point cloud based 3D detection methods. In MMDetection3D 0.12.0, we add ImVoteNet to
our model zoo, thus updating SUNRGBD correspondingly by adding image-related pre-processing steps. Specifically,
we made these changes:

• Fix a bug in the image file path in meta data.

• Convert calibration matrices from double to float to avoid type mismatch in further operations.

• Add instructions in the documents on preparing image data.

Please refer to the SUNRGBD README.md for more details.
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32.8 0.6.0

32.8.1 VoteNet and H3DNet model structure update

In MMDetection 0.6.0, we updated the model structures of VoteNet and H3DNet, therefore model checkpoints gen-
erated by MMDetection < 0.6.0 should be first converted to a format compatible with the latest structures via con-
vert_votenet_checkpoints.py and convert_h3dnet_checkpoints.py . For more details, please refer to the VoteNet
README.md and H3DNet README.md.
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https://github.com/open-mmlab/mmdetection3d/blob/master/tools/model_converters/convert_votenet_checkpoints.py
https://github.com/open-mmlab/mmdetection3d/blob/master/tools/model_converters/convert_votenet_checkpoints.py
https://github.com/open-mmlab/mmdetection3d/blob/master/tools/model_converters/convert_h3dnet_checkpoints.py
https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet/README.md/
https://github.com/open-mmlab/mmdetection3d/tree/master/configs/h3dnet/README.md/


mmcv Documentation, Release 1.1.0

248 Chapter 32. Compatibility



CHAPTER

THIRTYTHREE

FAQ

We list some potential troubles encountered by users and developers, along with their corresponding solutions. Feel
free to enrich the list if you find any frequent issues and contribute your solutions to solve them. If you have any trouble
with environment configuration, model training, etc, please create an issue using the provided templates and fill in all
required information in the template.

33.1 MMEngine/MMCV/MMDet/MMDet3D Installation

• Compatibility issue between MMEngine, MMCV, MMDetection and MMDetection3D; “ConvWS is already
registered in conv layer”; “AssertionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx,
<=xxx.”

• The required versions of MMEngine, MMCV and MMDetection for different versions of MMDetection3D are
as below. Please install the correct version of MMEngine, MMCV and MMDetection to avoid installation issues.

Note: If you want to install mmdet3d-v1.0.0rcx, the compatible MMDetection, MMSegmentation and MMCV versions
table can be found at here. Please choose the correct version of MMCV, MMDetection and MMSegmentation to avoid
installation issues.

• If you faced the error shown below when importing open3d:

OSError: /lib/x86_64-linux-gnu/libm.so.6: version 'GLIBC_2.27' not found

please downgrade open3d to 0.9.0.0, because the latest open3d needs the support of file ‘GLIBC_2.27’, which
only exists in Ubuntu 18.04, not in Ubuntu 16.04.

• If you faced the error when importing pycocotools, this is because nuscenes-devkit installs pycocotools but mmdet
relies on mmpycocotools. The current workaround is as below. We will migrate to use pycocotools in the future.

pip uninstall pycocotools mmpycocotools
pip install mmpycocotools

NOTE: We have migrated to use pycocotools in mmdet3d >= 0.13.0.

• If you face the error shown below when importing pycocotools:

ValueError: numpy.ndarray size changed, may indicate binary incompatibility.
Expected 88 from C header, got 80 from PyObject

please downgrade pycocotools to 2.0.1 because of the incompatibility between the newest pycocotools and numpy
< 1.20.0. Or you can compile and install the latest pycocotools from source as below:

pip install -e "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"

or

pip install -e "git+https://github.com/ppwwyyxx/cocoapi#egg=pycocotools&subdirectory=PythonAPI"
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• If you face some errors about numba in cuda-9.0 environment, you should check the version of numba. In cuda-
9.0 environment, the high version of numba is not supported and we suggest you could install numba==0.53.0.

33.2 How to annotate point cloud?

MMDetection3D does not support point cloud annotation. Some open-source annotation tool are offered for reference:

• SUSTechPOINTS

• LATTE

Besides, we improved LATTE for better use. More details can be found here.
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