Shortcuts

SUN RGB-D Dataset

Dataset preparation

For the overall process, please refer to the README page for SUN RGB-D.

Download SUN RGB-D data and toolbox

Download SUNRGBD data HERE. Then, move SUNRGBD.zip, SUNRGBDMeta2DBB_v2.mat, SUNRGBDMeta3DBB_v2.mat and SUNRGBDtoolbox.zip to the OFFICIAL_SUNRGBD folder, unzip the zip files.

The directory structure before data preparation should be as below:

sunrgbd
├── README.md
├── matlab
│   ├── extract_rgbd_data_v1.m
│   ├── extract_rgbd_data_v2.m
│   ├── extract_split.m
├── OFFICIAL_SUNRGBD
│   ├── SUNRGBD
│   ├── SUNRGBDMeta2DBB_v2.mat
│   ├── SUNRGBDMeta3DBB_v2.mat
│   ├── SUNRGBDtoolbox

Extract data and annotations for 3D detection from raw data

Extract SUN RGB-D annotation data from raw annotation data by running (this requires MATLAB installed on your machine):

matlab -nosplash -nodesktop -r 'extract_split;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v2;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v1;quit;'

The main steps include:

  • Extract train and val split.

  • Extract data for 3D detection from raw data.

  • Extract and format detection annotation from raw data.

The main component of extract_rgbd_data_v2.m which extracts point cloud data from depth map is as follows:

data = SUNRGBDMeta(imageId);
data.depthpath(1:16) = '';
data.depthpath = strcat('../OFFICIAL_SUNRGBD', data.depthpath);
data.rgbpath(1:16) = '';
data.rgbpath = strcat('../OFFICIAL_SUNRGBD', data.rgbpath);

% extract point cloud from depth map
[rgb,points3d,depthInpaint,imsize]=read3dPoints(data);
rgb(isnan(points3d(:,1)),:) = [];
points3d(isnan(points3d(:,1)),:) = [];
points3d_rgb = [points3d, rgb];

% MAT files are 3x smaller than TXT files. In Python we can use
% scipy.io.loadmat('xxx.mat')['points3d_rgb'] to load the data.
mat_filename = strcat(num2str(imageId,'%06d'), '.mat');
txt_filename = strcat(num2str(imageId,'%06d'), '.txt');
% save point cloud data
parsave(strcat(depth_folder, mat_filename), points3d_rgb);

The main component of extract_rgbd_data_v1.m which extracts annotation is as follows:

% Write 2D and 3D box label
data2d = data;
fid = fopen(strcat(det_label_folder, txt_filename), 'w');
for j = 1:length(data.groundtruth3DBB)
    centroid = data.groundtruth3DBB(j).centroid;  % 3D bbox center
    classname = data.groundtruth3DBB(j).classname;  % class name
    orientation = data.groundtruth3DBB(j).orientation;  % 3D bbox orientation
    coeffs = abs(data.groundtruth3DBB(j).coeffs);  % 3D bbox size
    box2d = data2d.groundtruth2DBB(j).gtBb2D;  % 2D bbox
    fprintf(fid, '%s %d %d %d %d %f %f %f %f %f %f %f %f\n', classname, box2d(1), box2d(2), box2d(3), box2d(4), centroid(1), centroid(2), centroid(3), coeffs(1), coeffs(2), coeffs(3), orientation(1), orientation(2));
end
fclose(fid);

The above two scripts call functions such as read3dPoints from the toolbox provided by SUN RGB-D.

The directory structure after extraction should be as follows.

sunrgbd
├── README.md
├── matlab
│   ├── extract_rgbd_data_v1.m
│   ├── extract_rgbd_data_v2.m
│   ├── extract_split.m
├── OFFICIAL_SUNRGBD
│   ├── SUNRGBD
│   ├── SUNRGBDMeta2DBB_v2.mat
│   ├── SUNRGBDMeta3DBB_v2.mat
│   ├── SUNRGBDtoolbox
├── sunrgbd_trainval
│   ├── calib
│   ├── depth
│   ├── image
│   ├── label
│   ├── label_v1
│   ├── seg_label
│   ├── train_data_idx.txt
│   ├── val_data_idx.txt

Under each following folder there are overall 5285 train files and 5050 val files:

  • calib: Camera calibration information in .txt

  • depth: Point cloud saved in .mat (xyz+rgb)

  • image: Image data in .jpg

  • label: Detection annotation data in .txt (version 2)

  • label_v1: Detection annotation data in .txt (version 1)

  • seg_label: Segmentation annotation data in .txt

Currently, we use v1 data for training and testing, so the version 2 labels are unused.

Create dataset

Please run the command below to create the dataset.

python tools/create_data.py sunrgbd --root-path ./data/sunrgbd \
--out-dir ./data/sunrgbd --extra-tag sunrgbd

or (if in a slurm environment)

bash tools/create_data.sh <job_name> sunrgbd

The above point cloud data are further saved in .bin format. Meanwhile .pkl info files are also generated for saving annotation and metadata.

The directory structure after processing should be as follows.

sunrgbd
├── README.md
├── matlab
│   ├── ...
├── OFFICIAL_SUNRGBD
│   ├── ...
├── sunrgbd_trainval
│   ├── ...
├── points
├── sunrgbd_infos_train.pkl
├── sunrgbd_infos_val.pkl
  • points/xxxxxx.bin: The point cloud data after downsample.

  • sunrgbd_infos_train.pkl: The train data infos, the detailed info of each scene is as follows:

    • info[‘lidar_points’]: A dict containing all information related to the the lidar points.

      • info[‘lidar_points’][‘num_pts_feats’]: The feature dimension of point.

      • info[‘lidar_points’][‘lidar_path’]: The filename of the lidar point cloud data.

    • info[‘images’]: A dict containing all information relate to the image data.

      • info[‘images’][‘CAM0’][‘img_path’]: The filename of the image.

      • info[‘images’][‘CAM0’][‘depth2img’]: Transformation matrix from depth to image with shape (4, 4).

      • info[‘images’][‘CAM0’][‘height’]: The height of image.

      • info[‘images’][‘CAM0’][‘width’]: The width of image.

    • info[‘instances’]: A list of dict contains all the annotations of this frame. Each dict corresponds to annotations of single instance. For the i-th instance:

      • info[‘instances’][i][‘bbox_3d’]: List of 7 numbers representing the 3D bounding box in depth coordinate system.

      • info[‘instances’][i][‘bbox’]: List of 4 numbers representing the 2D bounding box of the instance, in (x1, y1, x2, y2) order.

      • info[‘instances’][i][‘bbox_label_3d’]: An int indicates the 3D label of instance and the -1 indicates ignore class.

      • info[‘instances’][i][‘bbox_label’]: An int indicates the 2D label of instance and the -1 indicates ignore class.

  • sunrgbd_infos_val.pkl: The val data infos, which shares the same format as sunrgbd_infos_train.pkl.

Train pipeline

A typical train pipeline of SUN RGB-D for point cloud only 3D detection is as follows.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadAnnotations3D'),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(type='PointSample', num_points=20000),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]

Data augmentation for point clouds:

  • RandomFlip3D: randomly flip the input point cloud horizontally or vertically.

  • GlobalRotScaleTrans: rotate the input point cloud, usually in the range of [-30, 30] (degrees) for SUN RGB-D; then scale the input point cloud, usually in the range of [0.85, 1.15] for SUN RGB-D; finally translate the input point cloud, usually by 0 for SUN RGB-D (which means no translation).

  • PointSample: downsample the input point cloud.

A typical train pipeline of SUN RGB-D for multi-modality (point cloud and image) 3D detection is as follows.

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations3D'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', scale=(1333, 600), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.0),
    dict(type='Pad', size_divisor=32),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d','img', 'gt_bboxes', 'gt_bboxes_labels'])
]

Data augmentation for images:

  • Resize: resize the input image, keep_ratio=True means the ratio of the image is kept unchanged.

  • RandomFlip: randomly flip the input image.

The image augmentation functions are implemented in MMDetection.

Metrics

Same as ScanNet, typically mean Average Precision (mAP) is used for evaluation on SUN RGB-D, e.g. mAP@0.25 and mAP@0.5. In detail, a generic function to compute precision and recall for 3D object detection for multiple classes is called. Please refer to indoor_eval for more details.

Since SUN RGB-D consists of image data, detection on image data is also feasible. For instance, in ImVoteNet, we first train an image detector, and we also use mAP for evaluation, e.g. mAP@0.5. We use the eval_map function from MMDetection to calculate mAP.

Read the Docs v: stable
Versions
latest
stable
v1.4.0
v1.3.0
v1.2.0
v1.1.1
v1.1.0
v1.0.0rc1
v1.0.0rc0
v0.18.1
v0.18.0
v0.17.3
v0.17.2
v0.17.1
v0.17.0
v0.16.0
v0.15.0
v0.14.0
v0.13.0
v0.12.0
v0.11.0
v0.10.0
v0.9.0
dev-1.x
dev
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.