Shortcuts

Source code for mmdet3d.core.bbox.structures.base_box3d

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from abc import abstractmethod

import numpy as np
import torch
from mmcv.ops import box_iou_rotated, points_in_boxes_all, points_in_boxes_part

from .utils import limit_period


[docs]class BaseInstance3DBoxes(object): """Base class for 3D Boxes. Note: The box is bottom centered, i.e. the relative position of origin in the box is (0.5, 0.5, 0). Args: tensor (torch.Tensor | np.ndarray | list): a N x box_dim matrix. box_dim (int): Number of the dimension of a box. Each row is (x, y, z, x_size, y_size, z_size, yaw). Defaults to 7. with_yaw (bool): Whether the box is with yaw rotation. If False, the value of yaw will be set to 0 as minmax boxes. Defaults to True. origin (tuple[float], optional): Relative position of the box origin. Defaults to (0.5, 0.5, 0). This will guide the box be converted to (0.5, 0.5, 0) mode. Attributes: tensor (torch.Tensor): Float matrix of N x box_dim. box_dim (int): Integer indicating the dimension of a box. Each row is (x, y, z, x_size, y_size, z_size, yaw, ...). with_yaw (bool): If True, the value of yaw will be set to 0 as minmax boxes. """ def __init__(self, tensor, box_dim=7, with_yaw=True, origin=(0.5, 0.5, 0)): if isinstance(tensor, torch.Tensor): device = tensor.device else: device = torch.device('cpu') tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that # does not depend on the inputs (and consequently confuses jit) tensor = tensor.reshape((0, box_dim)).to( dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size() if tensor.shape[-1] == 6: # If the dimension of boxes is 6, we expand box_dim by padding # 0 as a fake yaw and set with_yaw to False. assert box_dim == 6 fake_rot = tensor.new_zeros(tensor.shape[0], 1) tensor = torch.cat((tensor, fake_rot), dim=-1) self.box_dim = box_dim + 1 self.with_yaw = False else: self.box_dim = box_dim self.with_yaw = with_yaw self.tensor = tensor.clone() if origin != (0.5, 0.5, 0): dst = self.tensor.new_tensor((0.5, 0.5, 0)) src = self.tensor.new_tensor(origin) self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src) @property def volume(self): """torch.Tensor: A vector with volume of each box.""" return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5] @property def dims(self): """torch.Tensor: Size dimensions of each box in shape (N, 3).""" return self.tensor[:, 3:6] @property def yaw(self): """torch.Tensor: A vector with yaw of each box in shape (N, ).""" return self.tensor[:, 6] @property def height(self): """torch.Tensor: A vector with height of each box in shape (N, ).""" return self.tensor[:, 5] @property def top_height(self): """torch.Tensor: A vector with the top height of each box in shape (N, ).""" return self.bottom_height + self.height @property def bottom_height(self): """torch.Tensor: A vector with bottom's height of each box in shape (N, ).""" return self.tensor[:, 2] @property def center(self): """Calculate the center of all the boxes. Note: In MMDetection3D's convention, the bottom center is usually taken as the default center. The relative position of the centers in different kinds of boxes are different, e.g., the relative center of a boxes is (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is recommended to use ``bottom_center`` or ``gravity_center`` for clearer usage. Returns: torch.Tensor: A tensor with center of each box in shape (N, 3). """ return self.bottom_center @property def bottom_center(self): """torch.Tensor: A tensor with center of each box in shape (N, 3).""" return self.tensor[:, :3] @property def gravity_center(self): """torch.Tensor: A tensor with center of each box in shape (N, 3).""" pass @property def corners(self): """torch.Tensor: a tensor with 8 corners of each box in shape (N, 8, 3).""" pass @property def bev(self): """torch.Tensor: 2D BEV box of each box with rotation in XYWHR format, in shape (N, 5).""" return self.tensor[:, [0, 1, 3, 4, 6]] @property def nearest_bev(self): """torch.Tensor: A tensor of 2D BEV box of each box without rotation.""" # Obtain BEV boxes with rotation in XYWHR format bev_rotated_boxes = self.bev # convert the rotation to a valid range rotations = bev_rotated_boxes[:, -1] normed_rotations = torch.abs(limit_period(rotations, 0.5, np.pi)) # find the center of boxes conditions = (normed_rotations > np.pi / 4)[..., None] bboxes_xywh = torch.where(conditions, bev_rotated_boxes[:, [0, 1, 3, 2]], bev_rotated_boxes[:, :4]) centers = bboxes_xywh[:, :2] dims = bboxes_xywh[:, 2:] bev_boxes = torch.cat([centers - dims / 2, centers + dims / 2], dim=-1) return bev_boxes
[docs] def in_range_bev(self, box_range): """Check whether the boxes are in the given range. Args: box_range (list | torch.Tensor): the range of box (x_min, y_min, x_max, y_max) Note: The original implementation of SECOND checks whether boxes in a range by checking whether the points are in a convex polygon, we reduce the burden for simpler cases. Returns: torch.Tensor: Whether each box is inside the reference range. """ in_range_flags = ((self.bev[:, 0] > box_range[0]) & (self.bev[:, 1] > box_range[1]) & (self.bev[:, 0] < box_range[2]) & (self.bev[:, 1] < box_range[3])) return in_range_flags
[docs] @abstractmethod def rotate(self, angle, points=None): """Rotate boxes with points (optional) with the given angle or rotation matrix. Args: angle (float | torch.Tensor | np.ndarray): Rotation angle or rotation matrix. points (torch.Tensor | numpy.ndarray | :obj:`BasePoints`, optional): Points to rotate. Defaults to None. """ pass
[docs] @abstractmethod def flip(self, bev_direction='horizontal'): """Flip the boxes in BEV along given BEV direction. Args: bev_direction (str, optional): Direction by which to flip. Can be chosen from 'horizontal' and 'vertical'. Defaults to 'horizontal'. """ pass
[docs] def translate(self, trans_vector): """Translate boxes with the given translation vector. Args: trans_vector (torch.Tensor): Translation vector of size (1, 3). """ if not isinstance(trans_vector, torch.Tensor): trans_vector = self.tensor.new_tensor(trans_vector) self.tensor[:, :3] += trans_vector
[docs] def in_range_3d(self, box_range): """Check whether the boxes are in the given range. Args: box_range (list | torch.Tensor): The range of box (x_min, y_min, z_min, x_max, y_max, z_max) Note: In the original implementation of SECOND, checking whether a box in the range checks whether the points are in a convex polygon, we try to reduce the burden for simpler cases. Returns: torch.Tensor: A binary vector indicating whether each box is inside the reference range. """ in_range_flags = ((self.tensor[:, 0] > box_range[0]) & (self.tensor[:, 1] > box_range[1]) & (self.tensor[:, 2] > box_range[2]) & (self.tensor[:, 0] < box_range[3]) & (self.tensor[:, 1] < box_range[4]) & (self.tensor[:, 2] < box_range[5])) return in_range_flags
[docs] @abstractmethod def convert_to(self, dst, rt_mat=None): """Convert self to ``dst`` mode. Args: dst (:obj:`Box3DMode`): The target Box mode. rt_mat (np.ndarray | torch.Tensor, optional): The rotation and translation matrix between different coordinates. Defaults to None. The conversion from `src` coordinates to `dst` coordinates usually comes along the change of sensors, e.g., from camera to LiDAR. This requires a transformation matrix. Returns: :obj:`BaseInstance3DBoxes`: The converted box of the same type in the `dst` mode. """ pass
[docs] def scale(self, scale_factor): """Scale the box with horizontal and vertical scaling factors. Args: scale_factors (float): Scale factors to scale the boxes. """ self.tensor[:, :6] *= scale_factor self.tensor[:, 7:] *= scale_factor # velocity
[docs] def limit_yaw(self, offset=0.5, period=np.pi): """Limit the yaw to a given period and offset. Args: offset (float, optional): The offset of the yaw. Defaults to 0.5. period (float, optional): The expected period. Defaults to np.pi. """ self.tensor[:, 6] = limit_period(self.tensor[:, 6], offset, period)
[docs] def nonempty(self, threshold=0.0): """Find boxes that are non-empty. A box is considered empty, if either of its side is no larger than threshold. Args: threshold (float, optional): The threshold of minimal sizes. Defaults to 0.0. Returns: torch.Tensor: A binary vector which represents whether each box is empty (False) or non-empty (True). """ box = self.tensor size_x = box[..., 3] size_y = box[..., 4] size_z = box[..., 5] keep = ((size_x > threshold) & (size_y > threshold) & (size_z > threshold)) return keep
def __getitem__(self, item): """ Note: The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `Boxes` that contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`: where vector is a torch.BoolTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned Boxes might share storage with this Boxes, subject to Pytorch's indexing semantics. Returns: :obj:`BaseInstance3DBoxes`: A new object of :class:`BaseInstance3DBoxes` after indexing. """ original_type = type(self) if isinstance(item, int): return original_type( self.tensor[item].view(1, -1), box_dim=self.box_dim, with_yaw=self.with_yaw) b = self.tensor[item] assert b.dim() == 2, \ f'Indexing on Boxes with {item} failed to return a matrix!' return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw) def __len__(self): """int: Number of boxes in the current object.""" return self.tensor.shape[0] def __repr__(self): """str: Return a strings that describes the object.""" return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')'
[docs] @classmethod def cat(cls, boxes_list): """Concatenate a list of Boxes into a single Boxes. Args: boxes_list (list[:obj:`BaseInstance3DBoxes`]): List of boxes. Returns: :obj:`BaseInstance3DBoxes`: The concatenated Boxes. """ assert isinstance(boxes_list, (list, tuple)) if len(boxes_list) == 0: return cls(torch.empty(0)) assert all(isinstance(box, cls) for box in boxes_list) # use torch.cat (v.s. layers.cat) # so the returned boxes never share storage with input cat_boxes = cls( torch.cat([b.tensor for b in boxes_list], dim=0), box_dim=boxes_list[0].tensor.shape[1], with_yaw=boxes_list[0].with_yaw) return cat_boxes
[docs] def to(self, device): """Convert current boxes to a specific device. Args: device (str | :obj:`torch.device`): The name of the device. Returns: :obj:`BaseInstance3DBoxes`: A new boxes object on the specific device. """ original_type = type(self) return original_type( self.tensor.to(device), box_dim=self.box_dim, with_yaw=self.with_yaw)
[docs] def clone(self): """Clone the Boxes. Returns: :obj:`BaseInstance3DBoxes`: Box object with the same properties as self. """ original_type = type(self) return original_type( self.tensor.clone(), box_dim=self.box_dim, with_yaw=self.with_yaw)
@property def device(self): """str: The device of the boxes are on.""" return self.tensor.device def __iter__(self): """Yield a box as a Tensor of shape (4,) at a time. Returns: torch.Tensor: A box of shape (4,). """ yield from self.tensor
[docs] @classmethod def height_overlaps(cls, boxes1, boxes2, mode='iou'): """Calculate height overlaps of two boxes. Note: This function calculates the height overlaps between boxes1 and boxes2, boxes1 and boxes2 should be in the same type. Args: boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes. boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes. mode (str, optional): Mode of IoU calculation. Defaults to 'iou'. Returns: torch.Tensor: Calculated iou of boxes. """ assert isinstance(boxes1, BaseInstance3DBoxes) assert isinstance(boxes2, BaseInstance3DBoxes) assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \ f'be in the same type, got {type(boxes1)} and {type(boxes2)}.' boxes1_top_height = boxes1.top_height.view(-1, 1) boxes1_bottom_height = boxes1.bottom_height.view(-1, 1) boxes2_top_height = boxes2.top_height.view(1, -1) boxes2_bottom_height = boxes2.bottom_height.view(1, -1) heighest_of_bottom = torch.max(boxes1_bottom_height, boxes2_bottom_height) lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height) overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0) return overlaps_h
[docs] @classmethod def overlaps(cls, boxes1, boxes2, mode='iou'): """Calculate 3D overlaps of two boxes. Note: This function calculates the overlaps between ``boxes1`` and ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type. Args: boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes. boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes. mode (str, optional): Mode of iou calculation. Defaults to 'iou'. Returns: torch.Tensor: Calculated 3D overlaps of the boxes. """ assert isinstance(boxes1, BaseInstance3DBoxes) assert isinstance(boxes2, BaseInstance3DBoxes) assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \ f'be in the same type, got {type(boxes1)} and {type(boxes2)}.' assert mode in ['iou', 'iof'] rows = len(boxes1) cols = len(boxes2) if rows * cols == 0: return boxes1.tensor.new(rows, cols) # height overlap overlaps_h = cls.height_overlaps(boxes1, boxes2) # bev overlap iou2d = box_iou_rotated(boxes1.bev, boxes2.bev) areas1 = (boxes1.bev[:, 2] * boxes1.bev[:, 3]).unsqueeze(1).expand( rows, cols) areas2 = (boxes2.bev[:, 2] * boxes2.bev[:, 3]).unsqueeze(0).expand( rows, cols) overlaps_bev = iou2d * (areas1 + areas2) / (1 + iou2d) # 3d overlaps overlaps_3d = overlaps_bev.to(boxes1.device) * overlaps_h volume1 = boxes1.volume.view(-1, 1) volume2 = boxes2.volume.view(1, -1) if mode == 'iou': # the clamp func is used to avoid division of 0 iou3d = overlaps_3d / torch.clamp( volume1 + volume2 - overlaps_3d, min=1e-8) else: iou3d = overlaps_3d / torch.clamp(volume1, min=1e-8) return iou3d
[docs] def new_box(self, data): """Create a new box object with data. The new box and its tensor has the similar properties as self and self.tensor, respectively. Args: data (torch.Tensor | numpy.array | list): Data to be copied. Returns: :obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the object's other properties are similar to ``self``. """ new_tensor = self.tensor.new_tensor(data) \ if not isinstance(data, torch.Tensor) else data.to(self.device) original_type = type(self) return original_type( new_tensor, box_dim=self.box_dim, with_yaw=self.with_yaw)
[docs] def points_in_boxes_part(self, points, boxes_override=None): """Find the box in which each point is. Args: points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z) in LiDAR or depth coordinate. boxes_override (torch.Tensor, optional): Boxes to override `self.tensor`. Defaults to None. Returns: torch.Tensor: The index of the first box that each point is in, in shape (M, ). Default value is -1 (if the point is not enclosed by any box). Note: If a point is enclosed by multiple boxes, the index of the first box will be returned. """ if boxes_override is not None: boxes = boxes_override else: boxes = self.tensor if points.dim() == 2: points = points.unsqueeze(0) box_idx = points_in_boxes_part(points, boxes.unsqueeze(0).to( points.device)).squeeze(0) return box_idx
[docs] def points_in_boxes_all(self, points, boxes_override=None): """Find all boxes in which each point is. Args: points (torch.Tensor): Points in shape (1, M, 3) or (M, 3), 3 dimensions are (x, y, z) in LiDAR or depth coordinate. boxes_override (torch.Tensor, optional): Boxes to override `self.tensor`. Defaults to None. Returns: torch.Tensor: A tensor indicating whether a point is in a box, in shape (M, T). T is the number of boxes. Denote this tensor as A, if the m^th point is in the t^th box, then `A[m, t] == 1`, elsewise `A[m, t] == 0`. """ if boxes_override is not None: boxes = boxes_override else: boxes = self.tensor points_clone = points.clone()[..., :3] if points_clone.dim() == 2: points_clone = points_clone.unsqueeze(0) else: assert points_clone.dim() == 3 and points_clone.shape[0] == 1 boxes = boxes.to(points_clone.device).unsqueeze(0) box_idxs_of_pts = points_in_boxes_all(points_clone, boxes) return box_idxs_of_pts.squeeze(0)
def points_in_boxes(self, points, boxes_override=None): warnings.warn('DeprecationWarning: points_in_boxes is a ' 'deprecated method, please consider using ' 'points_in_boxes_part.') return self.points_in_boxes_part(points, boxes_override) def points_in_boxes_batch(self, points, boxes_override=None): warnings.warn('DeprecationWarning: points_in_boxes_batch is a ' 'deprecated method, please consider using ' 'points_in_boxes_all.') return self.points_in_boxes_all(points, boxes_override)
Read the Docs v: dev
Versions
latest
stable
v1.0.0rc1
v1.0.0rc0
v0.18.1
v0.18.0
v0.17.3
v0.17.2
v0.17.1
v0.17.0
v0.16.0
v0.15.0
v0.14.0
v0.13.0
v0.12.0
v0.11.0
v0.10.0
v0.9.0
dev
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.