Shortcuts

Source code for mmdet3d.models.fusion_layers.point_fusion

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from torch import nn as nn
from torch.nn import functional as F

from mmdet3d.core.bbox.structures import (get_proj_mat_by_coord_type,
                                          points_cam2img)
from ..builder import FUSION_LAYERS
from . import apply_3d_transformation


def point_sample(img_meta,
                 img_features,
                 points,
                 proj_mat,
                 coord_type,
                 img_scale_factor,
                 img_crop_offset,
                 img_flip,
                 img_pad_shape,
                 img_shape,
                 aligned=True,
                 padding_mode='zeros',
                 align_corners=True):
    """Obtain image features using points.

    Args:
        img_meta (dict): Meta info.
        img_features (torch.Tensor): 1 x C x H x W image features.
        points (torch.Tensor): Nx3 point cloud in LiDAR coordinates.
        proj_mat (torch.Tensor): 4x4 transformation matrix.
        coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'.
        img_scale_factor (torch.Tensor): Scale factor with shape of
            (w_scale, h_scale).
        img_crop_offset (torch.Tensor): Crop offset used to crop
            image during data augmentation with shape of (w_offset, h_offset).
        img_flip (bool): Whether the image is flipped.
        img_pad_shape (tuple[int]): int tuple indicates the h & w after
            padding, this is necessary to obtain features in feature map.
        img_shape (tuple[int]): int tuple indicates the h & w before padding
            after scaling, this is necessary for flipping coordinates.
        aligned (bool, optional): Whether use bilinear interpolation when
            sampling image features for each point. Defaults to True.
        padding_mode (str, optional): Padding mode when padding values for
            features of out-of-image points. Defaults to 'zeros'.
        align_corners (bool, optional): Whether to align corners when
            sampling image features for each point. Defaults to True.

    Returns:
        torch.Tensor: NxC image features sampled by point coordinates.
    """

    # apply transformation based on info in img_meta
    points = apply_3d_transformation(
        points, coord_type, img_meta, reverse=True)

    # project points to camera coordinate
    pts_2d = points_cam2img(points, proj_mat)

    # img transformation: scale -> crop -> flip
    # the image is resized by img_scale_factor
    img_coors = pts_2d[:, 0:2] * img_scale_factor  # Nx2
    img_coors -= img_crop_offset

    # grid sample, the valid grid range should be in [-1,1]
    coor_x, coor_y = torch.split(img_coors, 1, dim=1)  # each is Nx1

    if img_flip:
        # by default we take it as horizontal flip
        # use img_shape before padding for flip
        orig_h, orig_w = img_shape
        coor_x = orig_w - coor_x

    h, w = img_pad_shape
    coor_y = coor_y / h * 2 - 1
    coor_x = coor_x / w * 2 - 1
    grid = torch.cat([coor_x, coor_y],
                     dim=1).unsqueeze(0).unsqueeze(0)  # Nx2 -> 1x1xNx2

    # align_corner=True provides higher performance
    mode = 'bilinear' if aligned else 'nearest'
    point_features = F.grid_sample(
        img_features,
        grid,
        mode=mode,
        padding_mode=padding_mode,
        align_corners=align_corners)  # 1xCx1xN feats

    return point_features.squeeze().t()


[docs]@FUSION_LAYERS.register_module() class PointFusion(BaseModule): """Fuse image features from multi-scale features. Args: img_channels (list[int] | int): Channels of image features. It could be a list if the input is multi-scale image features. pts_channels (int): Channels of point features mid_channels (int): Channels of middle layers out_channels (int): Channels of output fused features img_levels (int, optional): Number of image levels. Defaults to 3. coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. Defaults to 'LIDAR'. conv_cfg (dict, optional): Dict config of conv layers of middle layers. Defaults to None. norm_cfg (dict, optional): Dict config of norm layers of middle layers. Defaults to None. act_cfg (dict, optional): Dict config of activatation layers. Defaults to None. activate_out (bool, optional): Whether to apply relu activation to output features. Defaults to True. fuse_out (bool, optional): Whether apply conv layer to the fused features. Defaults to False. dropout_ratio (int, float, optional): Dropout ratio of image features to prevent overfitting. Defaults to 0. aligned (bool, optional): Whether apply aligned feature fusion. Defaults to True. align_corners (bool, optional): Whether to align corner when sampling features according to points. Defaults to True. padding_mode (str, optional): Mode used to pad the features of points that do not have corresponding image features. Defaults to 'zeros'. lateral_conv (bool, optional): Whether to apply lateral convs to image features. Defaults to True. """ def __init__(self, img_channels, pts_channels, mid_channels, out_channels, img_levels=3, coord_type='LIDAR', conv_cfg=None, norm_cfg=None, act_cfg=None, init_cfg=None, activate_out=True, fuse_out=False, dropout_ratio=0, aligned=True, align_corners=True, padding_mode='zeros', lateral_conv=True): super(PointFusion, self).__init__(init_cfg=init_cfg) if isinstance(img_levels, int): img_levels = [img_levels] if isinstance(img_channels, int): img_channels = [img_channels] * len(img_levels) assert isinstance(img_levels, list) assert isinstance(img_channels, list) assert len(img_channels) == len(img_levels) self.img_levels = img_levels self.coord_type = coord_type self.act_cfg = act_cfg self.activate_out = activate_out self.fuse_out = fuse_out self.dropout_ratio = dropout_ratio self.img_channels = img_channels self.aligned = aligned self.align_corners = align_corners self.padding_mode = padding_mode self.lateral_convs = None if lateral_conv: self.lateral_convs = nn.ModuleList() for i in range(len(img_channels)): l_conv = ConvModule( img_channels[i], mid_channels, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=self.act_cfg, inplace=False) self.lateral_convs.append(l_conv) self.img_transform = nn.Sequential( nn.Linear(mid_channels * len(img_channels), out_channels), nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), ) else: self.img_transform = nn.Sequential( nn.Linear(sum(img_channels), out_channels), nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), ) self.pts_transform = nn.Sequential( nn.Linear(pts_channels, out_channels), nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), ) if self.fuse_out: self.fuse_conv = nn.Sequential( nn.Linear(mid_channels, out_channels), # For pts the BN is initialized differently by default # TODO: check whether this is necessary nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), nn.ReLU(inplace=False)) if init_cfg is None: self.init_cfg = [ dict(type='Xavier', layer='Conv2d', distribution='uniform'), dict(type='Xavier', layer='Linear', distribution='uniform') ]
[docs] def forward(self, img_feats, pts, pts_feats, img_metas): """Forward function. Args: img_feats (list[torch.Tensor]): Image features. pts: [list[torch.Tensor]]: A batch of points with shape N x 3. pts_feats (torch.Tensor): A tensor consist of point features of the total batch. img_metas (list[dict]): Meta information of images. Returns: torch.Tensor: Fused features of each point. """ img_pts = self.obtain_mlvl_feats(img_feats, pts, img_metas) img_pre_fuse = self.img_transform(img_pts) if self.training and self.dropout_ratio > 0: img_pre_fuse = F.dropout(img_pre_fuse, self.dropout_ratio) pts_pre_fuse = self.pts_transform(pts_feats) fuse_out = img_pre_fuse + pts_pre_fuse if self.activate_out: fuse_out = F.relu(fuse_out) if self.fuse_out: fuse_out = self.fuse_conv(fuse_out) return fuse_out
[docs] def obtain_mlvl_feats(self, img_feats, pts, img_metas): """Obtain multi-level features for each point. Args: img_feats (list(torch.Tensor)): Multi-scale image features produced by image backbone in shape (N, C, H, W). pts (list[torch.Tensor]): Points of each sample. img_metas (list[dict]): Meta information for each sample. Returns: torch.Tensor: Corresponding image features of each point. """ if self.lateral_convs is not None: img_ins = [ lateral_conv(img_feats[i]) for i, lateral_conv in zip(self.img_levels, self.lateral_convs) ] else: img_ins = img_feats img_feats_per_point = [] # Sample multi-level features for i in range(len(img_metas)): mlvl_img_feats = [] for level in range(len(self.img_levels)): mlvl_img_feats.append( self.sample_single(img_ins[level][i:i + 1], pts[i][:, :3], img_metas[i])) mlvl_img_feats = torch.cat(mlvl_img_feats, dim=-1) img_feats_per_point.append(mlvl_img_feats) img_pts = torch.cat(img_feats_per_point, dim=0) return img_pts
[docs] def sample_single(self, img_feats, pts, img_meta): """Sample features from single level image feature map. Args: img_feats (torch.Tensor): Image feature map in shape (1, C, H, W). pts (torch.Tensor): Points of a single sample. img_meta (dict): Meta information of the single sample. Returns: torch.Tensor: Single level image features of each point. """ # TODO: image transformation also extracted img_scale_factor = ( pts.new_tensor(img_meta['scale_factor'][:2]) if 'scale_factor' in img_meta.keys() else 1) img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False img_crop_offset = ( pts.new_tensor(img_meta['img_crop_offset']) if 'img_crop_offset' in img_meta.keys() else 0) proj_mat = get_proj_mat_by_coord_type(img_meta, self.coord_type) img_pts = point_sample( img_meta=img_meta, img_features=img_feats, points=pts, proj_mat=pts.new_tensor(proj_mat), coord_type=self.coord_type, img_scale_factor=img_scale_factor, img_crop_offset=img_crop_offset, img_flip=img_flip, img_pad_shape=img_meta['input_shape'][:2], img_shape=img_meta['img_shape'][:2], aligned=self.aligned, padding_mode=self.padding_mode, align_corners=self.align_corners, ) return img_pts
Read the Docs v: dev
Versions
latest
stable
v1.0.0rc1
v1.0.0rc0
v0.18.1
v0.18.0
v0.17.3
v0.17.2
v0.17.1
v0.17.0
v0.16.0
v0.15.0
v0.14.0
v0.13.0
v0.12.0
v0.11.0
v0.10.0
v0.9.0
dev
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.